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Abstract

The goal of this dissertation is to develop a nonparametric method for obtain-

ing a confidence interval for the mean of a stationary sequence. As indicated in

the literature, nonparametric confidence intervals in practice often have undesir-

able small-sample asymmetry and coverage characteristics. These phenomena are

partially due to the fact that the third and fourth cumulants of the point estima-

tor for the stationary mean, unlike those of the standard normal random variable,

are not zero. We will apply Edgeworth and Cornish-Fisher expansions to obtain

asymptotic expansions for the errors associated with confidence intervals. The

analysis isolates various elements that contribute to errors and makes it possible

for us to estimate each element and hopefully correct the errors to a smaller order.

We will use Glynn's method to develop first and second order pivots for the confi-

dence intervals. Furthermore, these procedures also improve the asymptotic order

of confidence interval accuracy. .

Keywords: simulation, steady-state, nonparametric confidence intervals,

Edgeworth expansions, stationary processes
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Chapter 1

Introduction

The use of stochastic analysis has long been an important tool in the study of

complex systems such as manufacturing, computer, and communications systems.

As the complexity of systems grow, it appears to be the rule rather than the excep-

tion that many detailed stochastic models are so complex such that it is extremely

difficult or impossible to obtain an exact analytic solution. Although simulation

was often viewed as a "method of last resort" to be used only when everything else

failed, the intrinsic complexity of stochastic models for real world systems, recent

advances in simulation methodology, and the availability of computing power and

software packages have made simulation one of the most widely used tools in system

analysis and operations research.

In a typical simulation study, we first construct a mathematical model that

corresponds to the real world system to be studied. We then perform computer

sampling experiments on the model, collect and analyze the output sequences, and

make inferences about the behavior of the system. Since simulation is a statistics

based computer sampling procedure, appropriate statistical techniques must be

used in both design and analysis of the simulation study before any meaningful

conclusion can be drawn.

Simulation output analysis is an area of active research. In most situations.

we want to estimate quantities associated with the stochastic system being simu-

lated. When estimating a quantity only by a sample mean, no indication of the



variability of the estimate is given. The -6tandard deviation of the estimate is one

device used for indicating the reliability or precision of an estimate. What is more

informative, however, is a confidence interval. Basically, we first obtain a point es-

timate, calculate its standard deviation, and then construct a confidence intervals

for each quantity to access the statistical variability of the point estimate. It is

generally thought that the construction of confidence intervals is one of the most

difficult and important issues in the field of simulation output analysis.

Although there is a large statistical literature devoted to the assignment of

confidence intervals, most of it can not be directly applied to simulation output

analysis. One important reason for this is that most stochastic processes associ-

ated with real world sinilation studies do not satisfy the standard assumptions in

the statistical literature, namely, independence, stationarity, etc. At present, there

are many methods proposed in the simulation literature. The most common meth-

ods are rephcations, batch means, overlapping batch means, regenerative, spectral,

autoregressive, autoregressive moving average, and standardized time series.

On the other hand, the recognition that computing costs are decreasing has

allowed statisticians and simulation researchers to consider confidence intervals

methods which are computationally more intensive but statistically better behaved

than previous techniques. Among these methods are the jackknife, bootstrap, other

resampling plans, and Johnson-Glynn pivital tranformations.

The underlying mathematical model in this study is a stationary stochastic

process which satisfies certain regularity conditions. As in any steady state analysis

of time series, a key assumption is that the initial state should have a very small

effect on the overall behavior of the system. However, when studying a specific

real world system, this assumption does not always hold. On the other hand.
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initial effects decay exponentially over time for several classes of stochastic processes

so that steady-state simulation is often appropriate for long simulation runs. In

Chapter 5, we give several numerical examples showing that their initial conditions

do not affect the behavior of the confidence intervals.

In this dissertation we develop a nonparametric method for obtaining a more

accurate asymptotic confidence interval for the sample mean of a stationary process

which satisfies certain regularity conditions. By "more accurate asymptotic confi-

dence interval" we mean that the coverage error, which is the d~fference between

the nominal and the actual coverage, associated with our confidence interval will

be of lower order than that of the traditional methods.

Our starting point is the traditional batch means method. We use the idea

of Johnson-Glynn pivotal transformations to obtain better confidence intervals for

the quantities of interest. No assumption has been made that the observed data are

sampled from either i.i.d., regenerative, or ARMA processes. We believe this more

general case is robust for the output analysis of real world simulation experiments.

The procedures we propose do not require the selection of any critical constants

that can not be reasonably preset. This fact and the less restrictive nature of the

assumptions will also allow us to implement these procedures as a software package

for the output analysis of many real world simulation studies.

The basic approach of the procedures we propose follow from Johnson [1.5].

Glynn [12], and Titus [25]. As indicated in Glynn [12], nonparametric confidence

intervals in practice often have undesirable small-sample asymmetry and coverage

characteristics. We will apply Edgeworth expansion theory to obtain asymptotic

expansions for the errors associated with confidence intervals. The analysis isolates

the various elements that contribute to the errors. We then use Glvnn's method to
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develop first and second order pivots to the confidence intervals, which deal with

asymmetry problems and coverage difficulties, respectively. These procedures also

improve the asymptotic order of confidence interval accuracy in the sense that the

actual coverage of the corrected confidence interval is closer to the nominal coverage

rate than previous methods.

Johnson [15] is perhaps the first author to use these procedures. He derives

a first order pivot for the t-statistic for independent and identically distributed

samples. Glynn [12] extends this idea to a second order pivot for the ratio estimators

of the regenerative processes. Titus [25] applies the same idea to asymptotically

stationary autoregressive processes of finite order.

The organization of this dissertation is as follows. In Chapter 2, we develop the

necessary background for cumulants, Edgeworth expansions, and Cornish-Fisher

expansions. Some properties of the cumulants for a stationary process satisfying

some regularity conditions are also discussed there. In Chapter 3, we derive the

first and second order Johnson-Glynn pivotal transformations to correct the error

in confidence interval coverage. Some computational and theoretical issues are

also discussed there. To demonstrate how our method works, several numerical

examples are displayed in Chapter 4. Chapter 5 summarizes the strength and

weakness of the Johnson-Glynn pivots as applied to batch means method. The

Appendix contains some of the more technical proofs.



Chapter 2

Mathematical Background

In this chapter, we will review the necessary mathematical background re-

quired for this dissertation. In Section 2.1, definition of cumulants as well as some

important properties of cumulants will be given. Section 2.2 concerns the Edge-

worth expansion while the Cornish-Fisher expansion is discussed in Section 2.3. In

Section 2.4, some new uniqueness properties of the Cornish-Fisher expansion will

be presented. Section 2.5 studies some properties associated with the cumulants

of stationary processes. Finally, in Section 2.6, we will present results about the

consistency properties of the sample moments for stationary processes.

2.1. Cumulants

Consider a random variable X with distribution function Fx. The moments

,a' = EX', r > 0, and central moments y, = E(X - EX)r, r > 0, are useful

constants for measuring properties of X and, in some cases, uniquely characterize

the distribution function Fx (Chung [8), pp. 98-99). For some statistical analyses

another sequence of constants, the cumulants, are more useful from a theoretical

point-of-view.

Let Ox be the characteristic function of X. Then, subject to existence, the

cumulants of X, Kr's, are formally defined by (Kendall and Stuart [161, p. 69)

x (t) j eitdFx
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,(it)r

,o (it)

r1

Thus I,. is the coefficient of (it)7 /r! in log Ox(') when the expansion in power series

exists; log 4Dx is called the cumulant generating function (c.g.f.) or the second

characteristic function. However, the first terminology is somehow misleading in

the sense that log Ox exists in some neighborhood of the origin even if the moments

and cumulants do not exist.

The proceeding expansions can be made rigorous. It is known that 4y is

uniformly continuous in (-oo, oo) and Ox(O) = 1 (Chung [8], p. 143). Therefore

there exists a neighborhood of the origin in which Ox is different from zero; let

ItI < A be this neighborhood. By taking the principal branch of the logarithm,

log 4Zx can be uniquely defined for It] < A. Moreover, log -x is continuous and

vanishes at t = 0. Now assume for some r > 1, EIXIT exists, we then have

- ,(it)'

=x(t) = + o(ItIr), (2.2)
J=O

as t - 0. We can then use the Maclaurin series log(1 + z) = z - z 2/2 + z!/3 -

to obtain

log x~) =£ (it)'
log -X-(t) + o(Itr), (2.3)

as t --+ 0, where the coefficients, Kj's, are the cumulants by definition. It is now

evident that the cumulant of order r exists if the moments of order r and lower

exist.
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,oint cumulants that involve two or more random variable, are also of inter-

est. Consider random variables X1i,... ,X, such that EIXJI" < , j =1.

for a positive integer n. Then all mixed absolute moments and cumulants of

X 1 ,...,X,, up to order n exist. Let =xi...x,(ti,...,t,) E{exp[iZ ,'=, tj,IIbe

the joint characteristic function of X 1 ... , X., then joint cumulants of X 1 ,..., X,.

cum(X 1 ,...,X,), is given by the coefficient of the (i)t "... t,/r! term in the Taylor

series expansion of log 4 x,...x,(.) about the origin.

According to the above definition, the first four joint cumulants are

cum(X 1 ) = EX,

curn(X'.X2) = EL[(Vl - EN 2 - EN2 )] = Cov(X1 , x'),

cum(X,, X 2 , X 3 )= E (X- EX,)(X2 - EX 2)(X 3 - EX 3)],

and

cum(X 1. X 2. . 3 , X 4 ) = E[(X, - EN1 )(X 2 - EX 2)(X3 - EX 3 )(X4 - EX 4)]

- CoV(X1, X2 )Cov(X 3, X4 ) - CoV(X 1 , X 3 )Cov(X 2, X 4 )

- Cov(X 1 , X4 )Cov(X 2 , X 3).

In general, the rth order joint cumulant, cum(X, ... ,X), is given by

cum(Xi ..... X) = Z(--1)P-l(p - 1)!(E fl Xj)...(E 17 X, ) , (2.4)

where the summation extends over all partitions 11 ..... vp, p = 1. r, of the set

{1 . .

Representing joint moments in terms of joint cumuiants are also uscfal. \We



recoid those that will be used.

E[X1 X2] = CUM(XI, X 2) + CUM(XI )CUM(X 2 ),

E[X1 X 2 X 3] = CUM(X 1, X2, X?3) + CUM(XI)CUM(X 2 , X?3) + CUM(X 2 )CUM(XI, X3)

+ CUM(X 3 )CUM(XI, X2 ) + CUM(X 1 )CUM(X 2 )CUM(X 3),

E[XlX 2X 3X 4 ] = CUM(XI,XA2, X 3, X 4 ) + CUM(X 1 )CUM(X 2, X3 , X 4 )

+ CUM(X 2 )CUM(Xl, V3 , X 4) + cum(X 3 )CUM(XI, X?2, X 4)

+ CUM(XV4 )CUM(Xl, X 2 , X 3 ) + CUM(X 1 , X2)CUM(X 3 , X?4)

" CUrn(X 1. X3 )CUM(X 2, X?4) + CUM(XI , X4 )CUM(X 2 . X3)

+ cum(XI, ?2 )CUM(X 3 )CUM(X 4 ) + CUM(XI , ?3 )CUM(y 2 )CUM(' 4)

+ CUM(Xl, ?4 )CUM(A? 2)CUrn(I 3) + CUM(X 3, 4CUM(X 1 )CUM(X 2 )

+ CUM(A? 2, ?4 ) )CUM(X?1 )CUM(X 3 ) + CUM(X 2 , XV3)CUM(X?1 )CUM(XA4)

+ CUM(X 1 )CUM(A 2 )CUM(A? 3)CUM(A 4).

For convenience, if i*, J. and k are positive integers, for random variables A?.

Y, and Z, we define

tq(A?) = cum(XL .,X), (2.5)

PK,, XY) = cum(X,. .. ' X, Y'... ,Y), (2.6)
terms j terms

and

KijkX, YIZ) = cum(i A?,. .,., Y, Z,..., Z). (2.7T)

I trms j erms k terms

We record here some useful properties of cumulants; see Brillinger [6]. p. 19.

Note that in all cases p, r. and s are positive integers.

. . .... .8



(1) cum(a 1X 1 ,... ,a,X,) = a, .a,cum(X,..., X,) for constants a,,..., a,.

(2) cum(X 1,...,X,) is symmetric in its arguments so that cum(X,...,X') =

cum(X,!1 I ... ,X,,) for any permutation (7r,. .. r,.) of (1,...,r).

(3) cum(X, ... Xr) = U if any nontrivial proper subset of Xi's are independent

of the remaining Xi's. To see this, we may suppose that (X 1 ,...,Xp) and

(XP, .. X,) are independent, then

log { E expi -- tXJ] } = log { E exp[i E tXj] }+log { Eexp i E tiXj }.
1-=-1 J=I j=p+l

There will be no (i)'tl ... t. term in the Taylor series expansion on the right

hand side; the desired result now follows from equation (2.4), the definition of

joint cumulants.

(4) cum(X1 + Y, X2,., XI) = cure(X1,.\X2, ... X,) + cum(Y, X2, ,X,).

(5) cum(X1 + a,,..., X,. + a,) = cum(X 1,..., X,) when r > 2 and ai's are con-

stants. It is sufficient to note from (4), that cum(XI + a1 ,X 2 ,. .. \r) =

cum(X 1,X 2,...,X ,) + cum(al, X 2,... ,X,.), but the last term is zero from

(3). The result now follows from induction.

(6) For a random variable X the cumulants { ,.(X)} and moments {4'(X)} satisfy

the following relationship.
r

Kr = (im - ( ... (fl ,(2.8)

rUr- = .. K:--0 (2.9)
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where both second summations extend over all nonnegative integers i's and

r's, and positive integers js's, such that EL, Et = m and F,,=, itjt = r

(Lukacs [20], p. 27).

(7) For a random variable X the cumulants {K,(X)} and central moments {I,.(X)}

satisfy the following relationship.

... i,(2.10)

rr!

,U Zr = iE 1 . jJ
s=O

where both second summations extend over all nonnegative integers i,'s and

r's, and integers j,'s, j > 1 for each s, such that E,'=, it = m and " I itj =

r. To see this, let X' = X - EX. Notice that ic(X') = p'(X') = ps(X') = 0;

t,(X') = tq(X) and p'(X') = pi(X') = yi(X), for each i > 2. Applying (6)

to Ki(X')'s and p'(X')'s yields the desired result.

(8) Joint moments can be representing by sums of products of joint cumulants.

EXi " "- X, = I:~ IC" ... x,' (2.12)

where the summation extends over all partitions vI,..., vp, p = 1, ... r, of

the set {1,...,r}, and

K1L = cum(XA,... ,.XM), (2.13)

where the ai's are the elements of v, (Rosenblatt [22], p. 34).

10



2.2. Formal Edgeworth Expansion

We now discuss some results for asymptotic expansions of distribution func-

tions. In order to motivate the idea of the expansions, we proceed formally as

follows.

Suppose Fx, 4 x, {K,(X) :r > 1}, and Fy, 4 y, {K.(Y) :r > 1} are dis-

tribution functions, characteristic functions, and cumulants of random variables

X and Y, respectively. Since 4x(t) = exp {r K(X)(it)/r!} and Dy(t)

exp { K= K(Y)(it)'/r!}, we have

4 x(t) = exp { Z[K(X ) - K(Y)]} t(4D)y (t). (2.14)

%r=1

If the characteristic function 4 'y is absolutely integrable over (-oo, cc), then Fy

is absolutely continuous and

fy(y) =Fy(y) - ~-~ exp{-ity}vy(t)dt. (2.15)

The density fy is bounded and continuous (Chung [8], p. 155). It follows that,

subject to existence,

D"fy (y) = j exp{-ity}(-it)7 ¢y(t)dt. (2.16)

where D = d/dy denotes the differential operator. Then, formally, the characteris-

tic function of the distribution function DFy will be (-it)'4y(t). By this obser-

vation and from equation (2.14), the uniqueness property of the Fourier transform

11



then yields

Fx(x)= exp {V (X)- K(Y)] }~"JI Fy (x), (2.17)

and similarly

= - ( D) r
fX (x) = exp (Kr ~(X) - K(Y) }f ((2.18)

r=1

The special case where Y is a normal random variable is most important. Let

Y be N(p , 2) and set

a(y) = (I/V72-7r)exp{-y2/2}. (2.19)

Then Y has density function fy (y) - s-a((y- p)/o), characteristic function

'1y(t) = exp{ipt-a 2 t2 /2}, and cumulants ,(Y) = P, Kc2 (Y) a 2, and rr(Y) = 0.

for each r > 3. Equation (2.18) becomes

{ (x)=(X) -,a D + ,K2(X) - 2 D2

fx(x) 2!

tC3(X) D 3 + K4(X) D 4 ... fy (x). (2.2u)3! + 4---!.

This is the well known Edgeworth expansion of Type A (Kendall and Stuart [16],

p. 170).

Another form of the Type A series is also of interest. First note that the various

derivatives of fy in the expansion can be expressed in the form of Chebyshev-

Hermite polynomials. Specifically, we have (Kendall and Stuart [16], p. 167)

(-D)'a(x) = H,(x)a(x), (2.21)

12



where {H,(x) :i _ 0} are the Chebyshev-Herri-te polynomials given by:

Ho(x) = 1,

Hi(x) =,

H 2 (x) X 2 - 1

H 3 (x) = 3 - 3x,

H4(X) = z 4 - 6X2 + 3,

and, in general, the rth Chebyshev-Hermite polynomial has the form

fr/21

H,(r - 2j)!j!2' (2.22)
j=O (

where fxl denotes the smallest integer which is greater than or equal to X. Since

fy (x) = a((x - p))/o), from equation (2.21),

(-D)"fy (x) = a-rHr((X - Pi)/a)fy (X). (2.23)

From equations (2.18) and (2.23) we can see that fx can now be formally expanded

in the products of fy and the Chebyshev-Hermite polynomials.

Up to this point an underlying assumption is that the functions fx and Fx

possess convergent Type A series. This is not always the case. For a discussion of

the convergence properties see Kendall and Stuart [16], pp. 173-174, and Cramer

[101, p. 223.

For practical applications, however, it is usually of little value to know the con-

vergence properties of the expansions. What we are really interested in is whether

a small number of terms would suffice to produce good approximations of the func-

tions fX and Fx. If this is the case, we would not be too concerned about the

13



convergence properties. On the other hand, if the series actually converges but a

satisfactory approximation can only be obtained after a large number of terms have

been calculated, then this Type A series would be of very little use.

One important application of the Type A series is when the cumulants of the

random variables have a special structure. For example, suppose we are given a

sequence of random variables {S, : n > 1}, with ESn = 0, n = 1,2,..., and for

each i > 2, the ith cumulant of S,,

K(S,,) = 0(n), (2.24)

as n -- oc. We are interested in the expansion of the distribution function of the

normalized random variable

Z,, = Sn/r 2 (S), (2.25)

as n --+ o0.

1 /2
We use this notation: ni = i(Sn) and 11 = x(Z,) = ,cl/x 1 2 = K2(Zn) -

1 = 0, and 1i =K- (Z,) = Pc// 2, for each i > 3. From equations (2.24) and (2.25),

it follows that, for each i > 3,

1j = 0(n-/ 2). (2.26)

Since i 1(Z,) = 0 and r 2 (Zn) = 1 we will choose p = 0 and a' = I in equation

(2.18), the Edgeworth expansion of Type A, and obtain

fz, (x) = exp { 3 + £4 - ILD' +"" }a(x). (2.27)

6 24 120

Using

exp{n-1 / 2di + n-ld 2 + n-3 / 2d3 + ...

14



=1+ -1/2 [di] + n-'[ 2 + d2] + 71 3/2 ~ ~ 2 + d3] +-, (2.28)

and equation (2.26), we can, at least formally, approximate fz. by the derivatives of

a(.) up to any order of n- 1/2 .For our purpose, we neglect terms of order o(n-3/2 ),

then we have, as n -- o

fz1(x) exp 3 +__4 D4 I D5}Ja(x) + o(n_3/2)6 24 120

I-3D3 +2 [- '4 D 4 + 3 D 6= {1i - D3+ [ D+)D

1-'2 + 47 + D]}a(X) + o(n - 31 )

= a(x) + H3( )H() + [IHH6(x)+ H a()
6l 1314 5

[+12 6 Ho(x) + 1H(x) + - Hs()Ia(x) + °(n-/)" (2.29)
126144 120

If we apply similar argument to Fz,, we then have (Cram6r [10]), as n -* o

Fz,(x) = D(x) - -H 2 (X)a(X)- [ L4H(x) + 3 H,(x)] a(x)
6 24.7

- H(\ + ,1 ) + -H ],( )]() + o(n-/2). (2.30)
±29 144 120

Note that if we only include the first term on the right hand side this is the usual

central limit theorem while all the remaining terms, with coefficients of smaller

order of n, represent the error terms in the approximation of the central limit

theorem.

In practical applications, we may not know the exact value for K2(S,), which

is the the variance of S,,. Suppose that K2(S,) is an estimator for K2(S,) then a

15



-1/2

formal Edgeworth expansion of Z, =_ Sn/K2(S) will be of interest.

If K: - .(Z,), for each i > 1, satisfies some asymptotic properties, then a

formal Edgeworth expansion can also be obtained. For example, suppose 11 =

O(nW1/ 2 ), F2 = O(n-')., and for each i > 3, 4 = 0(n'-/ 2 ). Then it can be shown

that, as n -+ oo (Kendall and Stuart [16], p. 176)

Fj-@() = (x) - i + 3H,(x)].a(x)

-[-H,(x) + T'Hl(x)

2 22

+ -3H(x) +-H 3 (x) + L3H.5(x)jCV(7) 0 (r<). (2.31)
6 24 72

2.3. Cornish-Fisher Expansions

Suppose that we have a sequence of random variables {Y, : n > 1} which are

asymptotically normal in the sense that there exist sequences {,, : n > 1} and

{o, : n > 1} such that as n - oc,

' =, N(O, 1). (2.32)
L~n

For large n, it is often possible to approximate the distribution of (Y',- n)/Un

by a normal, but for small to moderate n this may not be a good approximation.

Under some circumstance we are able to use a polynomial-variate transformation

such as

b,, = b, I. ( U- Y) )2 + (2.3a3
6n O'n

16



where b,,,i's are of order n1/2 or smaller. By choosing b,,,'s appropriately, we may

make the distribution of much closer to normal than that of (Y, - A,)/an.

It turns out that this problem is embedded in the following larger and more

natural question. Suppose is a N(O, 1) random variable, Z, has distribution func-

tion Fz,, and and its cumulants satisfy equation (2.26). If x and are corresponding

quantiles of Fz, and 4 respectively, namely,

Fz,(x) = t(), (2.34)

solving, at least formally, in terms of x and x in terms of will be of interest.

We sketch how to solve equation (2.34) when Fz, can only be estimated.

The basic idea is to approximate Fz, by its Edgeworth expansion. Let z be the

difference between distribution functions Fz, and 4, then as n --* oo

z = Fzn (x) - ¢(x)

= -[ H2 (x)la(x) - [ H 3(x) + 7I2H(x)]a(x) ... . (2.35)

If we neglect terms of o(n-'), then

z = -L[.H2(x)1Qr(x) - [4 H()+ */3SXlax + o(n-'). (2.36)

Then from equations (2.34), (2.36), and a Taylor expansion,

=-l(Fz2 (X))

= -1(¢X) + z)

,2
D-j(¢(DX)) + Z[ -1'( D(X)) + I-I"(€x))

17



-3

+ +-~J'(~) + -. (2.37)

To evaluate [ -]'((.)), [4-1]"(4(.)), and [4-1],,,((.)), we need the following

observation. Suppose W(.) is a monotone function and ) -- (-) is its inverse

function. If the third derivatives of both W(.) and V)(.) exist, then it can be shown

that

__ 1

[ ]'(v ) - o'( (v))' 
(2.38)

"'(i,(v))] (2.39)

[i]'(v) = 3 (''(4(v))j5 
- '((v)) (2.40)

From equations (2.21), (2.38), (2.39), and (2.40), it follows that

[=-1X ))- l/a(x), (2.41)

= HI(x)/[a(x)]2, (2.42)

[¢-l]'"(D(x)) = [3H'(x) - H2(X)]/[a(x)]3 . (2.43)

Finally, observe that z is a polynomial of n - 1/2, again, we can obtain a formal

approximation of (2.34) up to any order of n - 2 . Substitute the approximation

(2.36) into equation (2.37) and truncate those terms of order o(n-1 ). We obtain

[L3( 2 X3 4 1(X3 1).11] l + [1(4 x ) - 3x)] + o(n-). (2.44)

Notice that the three terms on the right hand side are of orders 0(1), 0(n-1/2 ),

and O(n-1), respectively.
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In practice, it is sometimes more convenient to express x in terms of . This

may be done by a technique introduced by Cornish and Fisher [9]. First, let r/

represents the difference between quantile points x and ,

7(x)-Sx - , (2.45)

From equation (2.44), it follows that

77 L1 4 (3 l2 (4 3

= ~( 2 _ 1+ L--( - 3 ) - L3-(4 - 7 ) + o(n - 1) = 0(n-1/2),(2.46)
6 24 36
3 1 4 (2- 1 2 /)

14) + - 1 (12 2 - 7) + o(n-) = O(n-/2) (2.47)

= 3 14 36= 2.

-() - - + o(n-') = 0(n-1/2). (2.48)
3 4 3

Then observe that by a Taylor expansion,

x+ (-) + (x -+ .

77 ()+ q( ) + (X- ' + 1 (X- )2"( ) +..}')

+ ()+ (X- )'+ (X- )2"1( ) +.. } ",( )

+ -... (2.49)

where the last equality is obtained by substituting the value of x - on the right

hand side of the second equality. Using this technique again and again yields, at

least formally,

7( ) + 7() + {q()[7/()]2 + '21 ( )1( )

+3 + + (2.50)
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Finally, substitute approximations (2.46), (2.47) and (2.48) into (2.50) and

neglect terms of o(n-1), we then have

13 ,2 + 4 [ 2

j= + _(_ -1+ -(3-3 )- 13(2 35 )}+ o(n-1). (2.51)
6 24 36

This is the required representation of x in . Notice that the three terms on the

right hand side are of orders 0(1), 0(n-1/2 ), and O(n- 1), respectively.

Both equations (2.44) and (2.51) are approximated to order 0(n-1). Cornish

and Fisher [9] also give higher-order expansions and tables to facilitate their use.

The above Cornish-Fisher expansions (2.44) and (2.51) correspond to the

Edgeworth expansion (2.30), namely, as n - oo

Fz,(x) = D(x) - T H2(x)a (x) - - H 3 (x) + LHs(x)] c(x) + o(n-). (2.52)
6 24 72i

Recall that the Edgeworth expansion of the form of equation (2.31), i.e.

Fy- - [ '1 + L- 2 (x)I]ak(x)F~(x) = (x) -K 6

L' ~Hi(x) + LH,()+ L113 Hx)+ 41 3 (x) + L3H X X2 2 2 '2

+ o(n-1), (2.53)

is useful when we do not have the exact value of the variance of a random variable.

The corresponding Cornish-Fisher expansions can be obtained by applying the same

procedures. We list the results as follows.

Xz- [+ x 2(X)
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+ [L(4X3 7x) - - 3x) + O(nr') (2.54)

+ F43- 3 ) - L3 ' - s + o(n - 1). (2.55)

A- application of the formal Cornish-Fisher expansions (2.44), (2.51), (2.54),

and (2.55) is as follows. It is quite often in the simulation study that we only know

a distribution function Fz, is asymptotically standard normal and we are interested

in its 6 quantile point X6. Traditionally we are used to let the corresponding quantile

point 6 of 4 as a substitute for x6, namely,

X6  (2.56)

But according to the Cornish-Fisher expansions (2.54) and (2.55), if we either

know or have a method to estimate the normalized cumulants 1,'s of Z,, then the

corresponding (estimated) adjusted quantile points

hi( 6 ) = s + + 6 1) (2.57)

and

- - - F2

- 13 2 12 14 33
h2(6) = G + 11 + -(b - 1) + G' + T4(6 - 3 6) - -(2 3 - 5 6) (2.5S)

66 36

will be both asymptotically better, as estimators for x6, than CS.
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2.4. Uniqueness Properties of Cornish-Fisher Expansions

There are two interesting interpretations of the Cornish-Fisher expansions.

We state them below but leave their proofs to the Appendix.

Proposition 2.1. Suppose and X are random variables, where is N(O, 1)

and ',, satisfies n,(X,,) = 1,,,1 = O(n-1/2), K2(X,) = 1 + ,,2 = 1 + 0(n-'),

K3 (AV) = 1,3 = O(n1/2 ), K4(X,) = ,,,= O(n'), and ,i(X,) = O(n-1), I > 5.

Then.

(1) there is a polynomial of degree two, g1(A) = Xn + an,o + a,,1XV + an,2.Xn, such

that a,., = (n -1/2), i = 0, 1, 2, and I,() - ti,(g(X.))j = O(n-1) for each i,

1 < i < 3. Moreover, the coefficients a,,,'s are unique up to Q(n-1/ 2 ). Specifically

ao = -l1n,+(1/6)l,, 3 +o(n-1/2), an.A = o(n-1/ 2 ), and an.2 = -(1/6)l,,a+O(n-1/2).

(2) If in addition, -ic(Xn) = o(n-*), I > 5, then there is a polynomial of degree

three, g2(X,) = Xn + an,o + an,1X + an,2X, + a -,3 Xn such that a, = 2 )

for each i. 1 < i < 4, and jIi(lf) -  i ( 9 2 ( X , ) ) j = o(n- 1 ) for each i, 1 < i < 4.

Moreover, the coefficients an,i's are unique up to O(n - '). Specifically, an,o = - 1,3 +

(1/6)1 ,3 + o(n - '), anj = -(1/2)/, 2 4 (1/3)l1,1,x , + (1/8)l1,4 - (7/36)ln,3 + o(n - 1).

an,2 = -(1/6)/n,3 + o(n-'), and an,3 = -(1/24)n,4 + (1/9)l/,3 + o(n-).

Proposition 2.2. Suppose and Xn are random variables, where is N(0. 1)

and X,, satisfies K(X,,) = I,, = 0(n-1/2), K2(Xn) = 1 + 1n,2 = 1 + O(n-1 ).

K3(-Xn) = 1,,3 = O(l1/2). Then,

(i) there is a polynomial of degree two, h1(f) -l + a,,o + a,j + a,, 2  . such

that a,., = O(n- 1/2 ), i -= 0, 1, 2, and lc,(Xn) - =i(hj()) = O(n-1 ) for each i.
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1 < I < 3. Moreover, the coefficients a'*,i's are unique up to 0(n-'/2 ). Specifically,

a, ,o = 1,1 - (1/6)1,,,3 + o(n-'/2 ), a, 1 = o(n- 1 /2 ), and a,.2 = (1/6)1n.3 + o(n.-1/ 2 ).

(2) If in addition K4(X'*) = 1,,4 = 0(n-1 ), then there is a polynomial of degree

three, h2() = + a,,,o + a,l + a,,2 2 + a,33s such taht a,,i = 0(n - 1/2) for each

i 1 < i < 4, and ,A(X) - x,(h2( ))[ = o(n -1 ) for each i, 1 < I < 4. Moreover,

the coefEcients a,,i's are unique up to O(n-1 ). Specifically, a*,o = 1n.1 - (1/tb)ln, 3 +

o ) ,= (1/2),,2 -(1/8),n4 + (5/36)/,3 + o(n-'), a,,.2 = (1/6)1n,3 + o(n-1),

and a,3 = (1/24)1,.4 - (1/1S)13 + o(n- 1).

In Proposition 2.1 we can actually obtain a slightly better result. For example.

in part (1) we can calculate a,'s so that they will be unique to order O(n-').

However, according to our assumption of the cumulants of Xn, the neglected terms

in the formal Cornish-Fisher expansion of X, are of order 0(n- 1). Thus calculating-

ai's to a lower order will not produce a better approximation, at least orderwise.

For this reason we do not present that result. A similar result and observation also

apply to part (2).

One significant point of Propositions 2.1 and 2.2 ;-*hat both the transforma-

tions from a standard normal random variable to a statistic and the transforma-

tion from a statistic to a standard normal random variable are unique. Moreover.

the second and third order polynomial transformations coincide with the first two

Cornish-Fisher expansions; see equations (2.54) and (2.55).

As a consequence of an Edgeworth expansion, Cornish-Fisher expansions can

transform a statistic so that its distribution is closer to a standard normal random

variable. Thus it can be used to generate an asymptotically better confidence

interval. Unfortunately. for many statistics associated with real world processes. it
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is extremely difficult to prove the existence of a rigorous Edgeworth expansion. The

two propositions above, in a sense, provide us an alternative approach for obtaining

"formal" Cornish-Fisher expansions for these situations.

2.5. Cumulants of Stationary Processes

In this section, we will study some properties of the cumulants of stationary

processes.

Suppose {X, : n > I } is a discrete time strictly stationary process with mixing

constants {a,. : n > 1} such that for any positive integers k and n,

IP(A n B) - P(A)P(B) < a,,

for all sets A and B, where A E a(X1,... , Xk), the a-field generated by random

variables X, ... , Xk, and B E oa(Xk+f,i Xk+n+l,...), the a-field generated by ran-

dom variables Xk+,,,Xk+,+l,.... If a, -- 0 as n -+ o, then Xk and Xk+, are

approximately independent for large n. In this case the sequence {X,, : n > 1 } is

said to be strongly mixing (Rosenblatt [22], pp. 63-64).

Two discrete time strictly stationary processes {X,, : n > 1} and {Y, : n > 1}

are jointly strongly mixing with mixing constants {a,, : n > 1 } if for arbitrary

constants cl and c2, let Z, = cIX, + c2Y, for each n > 1, then the process

{Z, : n > 1} is strongly mixing with mixing constant {,, : n > 1}.

Let us define Sn = E' X, to be the partial sum, and X, = Sn/n to be the

sample mean associated with the sequence. The subscript n will be omitted when

there is no confusion. We now cite the following theorem.
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Theorem 2.3 (Billingsley [5], p. 316). Suppose that the sequence {Xn: n >

1} is stationary and strongly mixing with a. = O(n - ) and that EX, = 0.

(1) If EX4 < 00, then

00n Var[T'-, --+ 0, = EX1 + 2 1: EXlXk+l,

k=1

where the series converges absolutely.

(2) If EX 12 < oo and a' > 0, then nl/2"X,/ =* N(O, 1).

Corollary 2.4. Suppose that the sequences {Xn, n > 1} and {Y: n > 1}

are stationary and jointly strongly mixing with an = 0(n - s ) and that EXn = 0,

EY, = 0, EX4 <c o, and EY,4 < oo. Then

00 00

n Cov[X.,V,.] --+ axy = E[XY] + E EXYk+l + E EYXk+i,
k=I k=1

where the series converges absolutely.

As noted in Billingsley [5], p. 316, in the proof of Theorem 2.3, the conditions

a,n = O(n - ') and EX.2 < oo are actually stronger than necessary; they are imposed

to avoid technical complications in the proof. One can also see that the sufficient

condition for Var[Y,.] = 0(n -1 ) is weaker that that of the central limit theorem.

Actually, as we will see in the next theorem, some general properties about the

order of the cumulants of the sample mean can be obtained.

Theorem 2.5 (Titus [25], p. 16). Consider a stationary sequence {X, : n > 1 }

such that: (1) for some positive integers j and k, EI X I14(k-1) < oc, and (2) the
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sequence is mixing with a,, = O(n- 2(j - 1+t ) ) for some F > 0. Then for constants

ao,...,ak, K(Z 1 .ajSn i) is O(n) as n -- oo. Consequently, for constants

ao,...,ak, Kj (E, 1 aiY,) is o(n-J) as n -. oo.

Instead of the assumptions in Theorem 2.5 above, Titus [25] actually assumes

that:

(1) For some positive integers j and k, each mixed moment of the form

EIXn,, ... X,, is bounded for all 1, 1 < < 4(jk-1), and (2) the sequence

is mixing with a,, = 0(n - 2(j - 1+')) for some e > 0.

For a stationary process, his assumptions and ours are equivalent. It is easy to see

that his assumption implies ours. The equivalency can be obtained by noting that,

from H5&der's inequality, EIX,, ... X, (EIXn, 1 )11 ... (EX,,I')1/1' = EIX 1I',

where the last equality follows from stationarity.

In both Theorems 2.3 and 2.5, the assumption that the sequence of mixing con-

stants is decreasing fast enough is crucial. That assumption is true if, in addition,

the strictly stationary process {X, : n > 1 } is either independent, moving average

of finite order, or m-dependent. Moreover, certain discrete time Markov chain has

mixing constants that are decreasing exponentially with time; see Billingsley [5],

p. 315, for details.

There are two more results that we will use latter on. The first one is a lemma

from Titus [25].

Lemma 2.6 (Titus [25], p. 23). Assume that {X,, : n > } is a station-

ary sequence. Let p = -t= pi, where each pi is a positive integer. Suppose
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EJX1 4(p - 1) < oo, and the sequence is mixing with an = O(n - 2(p+,)) for some

c > 0. Then cum(Sn ,...,S l) is O(n-iu(Ip/2j.p-j+1)) as n -- oo. Consequently,

cum(',...,Y') is O(nn(-P/21a1-j)) as n , oo.

The second one is a corollary of Theorem 2.5. Suppose that ic(S,,) = O(n) as

n -- oo for each i < j, then from properties (6) and (7) in Section 2.1, p'(Sn) =

O(n') and yj(S,) = O(nLi/2]) as n --- oo for each i < j. From this observation, we

have the following.

Corollary 2.7. Let {X, n > 1} be a stationary sequence such that: (1)

For some positive integers j and k, EjX1 14(jk-1) < 00, (2) The sequence is mix-

ing with an = 0(n - 2(-1+c)) for some e > 0. Then for constants ao,... ,ak,

,(Fk nl O(W) and =( jaiSin") O(,L,/2J) as n --* c. Con-

sequently, for constants ao,.. ., ak, p.i(Ekai n) =0(l) and uj(EhlaiXJ

0(n-r2/21) as n -, oc.

The cumulants of X' can be calculated by the next lemma, which is also from

Titus [25].

Lemma 2.8 (Titus [25], p. 29). Let {X, : n > 1} be a stationary process with

mixing constants {an : n > 1 }.

(1) If EIX,14 < oc, and a, = 0(n 4 ) as n - oc for some e > 0, then as n -+ cc

K2(X.) = n-'c 2 + n-2 d2 + o(n-2 ), where
0

C2= cum(Xo, Xi),

i=-oc 7
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00

d2 Z2i cum(Xo, Xg).

(2) If EJX1 I' < oo, and ac (n'' as in -+o for some c > 0, then as ni- oo,

=C(n n- 2c3 + n-3d 3 + o(n-3 ), where

C= z CUM(XO,X,X),

4 3 = -3i [cumn(Xo,, X., Xi) + cum(Xo, Xi, X1)]

-S6(i + j)cum(Xo, Xi, X,)

(3) ffEIX1 I"2 < oc, and an = 0(--)as n --4 oo for some c> 0, then as n -* c,

K4X)= n~c + n-'d 4 + o(n 4 ) where

C= E CUrn(XO X6,Xj,Xk),
ij k-oo

d= -42'[curn(Xo, X,,, Xo, X3() + cum(Xo, Xi, Xi, X 1

- 6i cum(Xo, Xo,Xi, Xi)

-512(i + j) [cum(Xo, X, Xi+3 ,yi+j)

+ CUM(X0, X1, Xj, Xi~) + cum(Xo, XoXj, Xi+3 )]

-524(i +j + k)cum(Xo, Xk, X+k, X+,+k).
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Corollary 2.9. Assume {X, : n > 1} is a stationary Process with zero mean and

S,, 's are the partial sums:

(1) If .2(X) = n- .c 2 + n-2d 2 + o(n- 2 ), then E(nl/ 2X7)2 = C2 + n-Id2 + o(n-').

(2) If tcj(X,) = n-i+' • ci + n-'di + o(n - i ) for 2 < i < 3, then E(n1 / 2YS,)3 =

n-1/ 2c3 + n-3/2d3 + o(n- 3/2).

(3) If ,i,(X.) = n- '+' • c, + n-'d + o(n-') for 2 < i < 4, then E(nl/2X, )4 =

3c + n1'[6c2 d2 + c41 + o(n-').

(4) If tei(X,) = n- i+1 • c, + n-'di + o(n - ') for 2 < i < 5, then E(n1/ 2X )5 =

n-1/ 2[Oc2c 3] + 0(n- 3/2).

(5) If tK(Xn) = n- '+ ' . ci + n-idi + o(n - ) for 2 < i < 6, then E(n7/2",)6

15c2 + O(n-1).

2.6. Consistency of Sample Moments

Let {X : i > 1} be a discrete time strictly stationary process. Assume

that {ju : r > 1} and {p, : r > 1} are the moments and central moments of

Xi. The {I" : r > 1} and {fi, : r > 1} represent important parameters about

the distribution of X 1. Natural estimators of these parameters are given by the

corresponding sample moments of {X :i > 1>}. Thus p' may be estimated by

n

Mn,, = (1/n)ZX, (2.59)

and u,. may be estimated by

M,,r = (1/n )--(X --), (2.60)
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for each r > 1. For convenience, we also denote p = u' = EX 1 and X = rn'

In this section, we follow the development of Serfling [24J, pp. 67-71, to show the

mean square consistency of these estimators. We begin with the following.

Proposition 2.10. Assume the sequence {Xi : i > 1} is stationary and strongly

mixing with a, = O(i- ) and, for an integer r, EX," < oo. Then

(1) Em', = r,;

(2) Var{ m',r) 0(n-');

(3) MSE{m'.,} = E{m',, - ''2 = O(n-1);

(4) m',. -y '4 in L' and in distribution, as n -* co.

Proof: (1) Since EXr = u' for each i, the result follows.

(2) Notice that the process {X[ : i > 1} is stationary and strongly mixing with

a = O(i-5 ); this result then follows from Theorem 2.3.

(3) This result follows from (1) and (2).

(4) This result follows from (3). El

Preliminary to stating properties of the estimates m,,,,'s, it is advantageous

to consider the closely related random variables

m, = (1/n) Z(X, - ,), (2.61)

for each r > 1. Properties of mn,'s will be deduced from those of the m .r's. The

same arguments employed in Proposition 2.10 immediately yield the following.

Proposition 2.11. Assume the sequence {Xj : i > 1} is stationary and strongly

mixing with ai = 0(1 - ') and, for an integer r, EX 4 < o. Then
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(1) Em*.- ;

(2) Var{m,.} = 0(n-');

(3) MSE{m,,.} = E{mL. - y'} 2 = 0(n-');

(4) m.,, -- , in L 2 and in distribution, as n --. oo.

We record the following equation from Serfling (24], p. 69.

?1

mn,= (1/n) (X -

i=1

S 1/n 1:(r (X,- -

= (-1)tmnj(m*)T , (2.62)

i=0

where we define mn, 0 = 1. Although analogous in form to m,r's, the random

variables mn,r's are much harder to analyze. Therefore, instead of dealing with

mn,r's directly, we exploit the relationship between mn,r's and ma, 's. We have the

following proposition.

Proposition 2.12. Assume the sequence {Xi : i > 1} is stationary and strongly

mixing with ai = O(i- ') and, for an integer r, EX1
4r < oc. if, in addition,

E(m)j = O(n-r/21), for each j, 0 < j < r, then

(1) Emn,, = j, + O(n-');

(2) Var{mn,7 } = 0(n-');

(3) MSE{m,T} = E{ n,, - /l}2 = 0(n-1);

(4) ms,, --. p in L2 and in distribution, as n -- oc.
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Proof: (1) Utilize equation (2.62) to write

Em,, - p : = )(-1i E rEr-j (m*,Y

Now, observe that
n n

Elm* ,l (1/n2)E{ 1](X, -,Z.)r-Z(I==

(1/n) 1 E{(Xo - ,)r-l(X, - 1)} + O(n - 2)

i= 00 (n-1),

where the second equality is obtained from the fact that {(Xi - IL) : i > 1} is zero

mean, {(Xi - p)'-' : i > 1} and {(Xi - y) : i > 1 } are jointly strongly mixing, the

fourth central moments of both (XI - p) 1 and (X 1 - p) are both finite, and then

by an application of Corollary 2.4. For each j >_ 2, use H61der's inequality

IE~m,7 ~1 m~:D [Elm-. r/r) [E Im-, jrlj'r.

By application of Minkowski's inequality

[E I-,,I. j Ir/(t-j) / [E { 1(1/n) Z (X , - p) -l /,(- ] (r-j)/r

n

_(1/n) E [EJJX, - r #1"]('

= 0(l),

and the assumption that E(m ,.i)r = O(n- r/ 21), we obtain

E m(,,,..,(m*,) = 0(1) [O(-rr/21 )]/
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= O(1)O(n-" 2)

= O(n-1).

The results then follow.

(2) Writing Var{m,,,} = E{m.,r} - {Em,,} 2, we seek to compute E{m n} and

combine the result in (1). To do this, we need to compute quantities of the form

E{mJ ,r_jl (mn.* .rj m (m. 1,)" 2i = Emn,r_j 2 mrnr_j2(rn.,I)J'1+j}, for each j1 and

J2, 0 J1 j1J2 :5 r. For Ji = J2 = 0, we have E(m ,, )2 = K21mnr} + {Em,,} 2. But

,,2{mnr1

n2

=(1/n 2)E{[Z[(X, ]2}j

00

=(1/n) Z: E{ [(X. - ti -ArI] [(Xi - ,u'T
.. p] I + Q(n-2)

1=00

QO(n-1)

where the equalities are justified by the moment and mixing conditions as well as

an application of Corollary 2.4. For (U1, i2) =(0, 1) or (1, 0), we have

Ef ~ *,} = cum(m~,n. 1 ,,, m*,1

+ cum(M,r..1 )CUM(Mn,, mnJ)

+ cum(Mn,J)CUM(M~~... 1 M~n,1 )

+ CUM(M,,)U(Mn,)cum(r l)-

The first term is at most Q(n 2 ) by Theorem 2.5. Each of the next two terms is at

most 0(n-'), which can be proved in a similar fashion as in (1). The last two terms

on the right hand side are both zero since Em,*1, = 0. ThusEmT.Im m 1 }=
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O(n-'). Finally, for ji +j2 _ 2, by a similar application -f the H6lder's inequality

and the Minkowski's inequality, we have

E"m, ,, = O(n-1 ).

The desired result now follows.

(3) This result follows from (1) and (2).

(4) This result follows from (3).
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Chapter 3

Johnson-Glynn Pivots for Stationary Processes

In order to obtain a more accurate confidence interval it is necessary that we

first obtain the formal Edgeworth and Cornish-Fisher expansions of the sample

statistic of interest. However, to obtain these expansions we have to calculate and

estimate various moments and cumulants of the sample statistic. In this chapter,

we will use this approach to obtain the first and second order Johnson-Glynn pivots

and the associated confidence intervals for the batch means method.

The organization of this chapter is as follows. In Section 3.1, we will review the

traditional batch means method. Section 3.2 shows the calculation of some mixed

cumulants related to the batch means method. The cumulants of the sample t-

statistic and the first and second order Johnson-Glynn pivots for the batch means

method will be presented in Section 3.3. Section 3.4 derives two new confidence

intervals from the Johnson-Glynn pivots and shows that the increase of the length

of the confidence intervals are asymptotically negligible. Section 3.5 compares the

computational efficiency of the traditional batch means method with that of the

first and second order Johnson-Glynn pivots.

3.1. Batch Means Method

Suppose {X; : i > 1} is a discrete time strictly stationary process. We are

interested in obtaining a point estimate and a confidence interval for the stationary

mean EX, where X has the same distribution as X1. In this section, we will review
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the traditional batch means method. Without loss of generality, we assume that

{Xi:i > 1) has zero-mean.

To show that a confidence interval for EX can be constructed, we follow

the development of Brillinger [6]. However, our assumptions about the stationary

processes are slightly different. Specifically, Brillinger ([6], p. 419) assumes that:

The discrete time process {X : i >_ 1} is stationary, continuous in mean,

and for each k, i > 1, and j.. k _ O, its cumulant of order k + 1 exists

and satisfies Icum{.X1.X,,j,,..., X,+j I < Lk(l +j?)-.. .(1 +j)- 1 , for

some finite positive constant Lk.

In our discussion, instead of the assumption that the cumulant functions decrease

reasonably fast as the arguments become far apart, we assume that the station-

ary processes satisfy certain moment conditions and are strongly mixing with the

mixing constants as's decrease as i -4 o. Notice that both assumptions require

that sufficient number of the moments of the random variable X are finite and also

require that the values of the stationary process at a distance from each other are

only weakly statistically dependent. Both assumptions are true if, in addition to

their respective moment conditions, the strictly stationary process {Xi : i > I } is

either independent, moving average of finite order, or m-dependent.

Notice that in the following discussion, only discrete time strictly stationary

processes are considered; however, the results for continuous time processes can be

obtained in a similar fashion (see Brillinger (6J).

Let

Tm - (/m) (3.1)
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be the sample mean. From Theorem 2.3, we know thaL if the mixing constants ai

are O(i - ') as i -+ oc, EX. 2 < oo, and a' = EX' + 2 E 00 1EXXj+j > 0, then

X-Ym/(0/ml/2) converges weakly to N(0, 1). Thus if we can estimate a then we can

use Ym as a point estimate and construct a confidence interval for EX.

Suppose the time interval [1, m] is split into n intervals of length b = [m/nj

each and Y, denotes the mean for the ith interval, i.e.

1 ib

Y, = b Xj, (3.2)
j=(i-1)b+l

for i = 1... , n. For the Batch Means Method, n is the number of batches, b is the

batch size, and the Y's are batch means. The basic idpa for batching is as follows.

We have a stationary process whose values at a distance are only weakly statistically

dependent. By batching, we transform the original data sequence to another one

and, hopefully, the dependency of that sequence will decay faster. As a matter of

fact, we can show that the batch means are asymptotically independent, in the sense

that JP(A n B) - P(A)P(B)I - 0 for all sets A and B, where A E 0a(Y,. . .,Yk),

and B e a(Yk+,,...), as n --* oc. We state the following proposition, whose proof

will be given at the Appendix.

Proposition 3.1. Suppose {X, : i > 1} is a discrete time, strictly stationary

stochastic process. For a fixed positive integer b and a real function g: Rb _- 1?.

where 1? is the set of real numbers, let Y = g(X-_1 )b+1, X(%- 1)b+ 2 , , Xb), for each

i > 1. Then

(1) The process {Y i > 1} is strictly stationary.

(2) Suppose, in addition to being stationary, {X, : i > 1} is strongly mixing with
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mixing constants {ai : i > 1}. Without loss of generality, we can assume that

the sequence of mixing constants {ai : i > 1} is a nonnegative and nonincreasing

sequence of i. Then {Y, : i > 1} is strongly mixing with mixing constants {/, i >

1}, where for each i > 1, j - a(i-,)b+,.

(3) For an increasing function h: R+ --- R+, where 1Z+ is the set of nonnegative

real numbers, E', h(a) < oo if and only if ZE' h(Oi) < oo.

(4) Suppose, in particular, Y= (/b) >b X(i- 1 )6+for each i > 1. Then EjX 1j <

oo implies that Ell Ili < c .

Basically, Proposition 3.1 states tnat the stationarity, mixing, and moment

conditions of a stationary process, as well as the finite summability of the mixing

constants are preserved after batching. We then have the following result.

Theorem 3.2 (Brillinger [6], p. 420). Suppose {Xj : i > 1} is stationary and

strongly mixing with cri = O(i- ') and that EXi = 0 and EXP2 < oc. Then for

fixed n, the Y 's are asymptotically independent and individually asymptotically

normal with mean EX and variance

00

(1/b)0 2 = (1/b)fEX1 + 2 EXIXk+I},
k=1

as m -- oo.

Since the Y's are asymptotically independent and and individually asymptot-

ically normal, the next natural question is whether we can use the usual approach

in analyzing i.i.d. normal random samples to generate a confidence interval for V.
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which is X,. Define

n (Yi =2.. f (3.3)

as the sample variance for {Y} and let

tflb =-- nEX (3.4)

We have the following.

Corollary 3.3 (Brillinger [6], p. 421). Suppose {X i > 1} is stationary and

strongly mixing with a, = O(i- ') and that EXj = 0 and EX 2 < oc. Then for

fixed n, the random variable tn,b converges to a Student-t random variable with

n - 1 degrees of freedom in the limit as m --+ oo.

Since a Student-t random variable with n - 1 degrees of freedom converges to

N(O, 1) as n -- oc, we can use the quantile points of the Student-t random variable

or the standard normal random variable to construct a confidence interval for EX.

3.2. Cumulants in Batch Means Method

The basic idea of the batch means method is to choose the batch size large

enough so that, hopefully, the correlation between the batch means becomes small

and each batch means is reasonably close to a normal. Then the confidence interval

methods for the i.i.d. normal random variables can be applied (see Corollary 3.3).

Thus the properties such as joint cumulants and moments or the mixing constants

of the batch means are important in the batch means method. In this section,

various cumulants related to the batch means will be given.
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Recall that for each i, 1 < i < n, Y = (1/b) 1 (,i-1)6+j is the ith batch

mean. We also define

1 n

V -,bEn (Y - X.) (3.5)

=m* Var(Xn), (3.6)

and

A V, -. (3.7)(x , 1 /b)

We will compute the order of various mixed cumulants of 7m, 72, (1/n) -= y

and X n,b. In the following derivation, we will assume that the process {X : 1 < i <

m} satisfies sufficient mixing and moment conditions so that there will not be any

problem regarding convergence of infinite sums. These conditions can be obtained

by applying Theorem 2.5. Below we list the asymptotic order of the cumulants,

while relegating the derivation to the Appendix. Each of the results below requires

certain order conditions on mixing constants and moments. As these are quite

complicated, they will only be given in the Appendix.

Cumulants of X,

IC2(Xm) = O(m-')

,,3(X) = O(M-2 )

,C4,(X.) = O(M - )

fC5(X) = O(M-4)

Cumulants of X

Ki(Xrn) = O(m - ')
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K 2 (Xrn) = O(m2)

K3 (Xrn) = O(m-)

KC4 (X2rn) = O(M-4)

Mixed Cumulants of Xm, and y4

M)= O(M-2)

K2 ,1(Xm,Xrn) = Q(Mr 2 )

1I,2 (_Xmr) = O(M)

KC3 ,(Xm,rn) = O(M-')

K 2 ,2 (TX,2r) =O(M-3)

KI,3 ( MXr) O(M_,)

K 4 ,(7m,Xrn2) O(M-')

K 3 ,2 (T.,Xrn)2 O(M-')

X2,3 (I., 4m) O(M-")

Ks,,d7mX2i) =O(M-')

r'3,(ym,X2.) O(M-')

(X) =O(M_6)
r.6 ,i(X'm,X2n ~6

K5, 2(Xm,Xrn) =O(M6')

IC7,(.Xmr)= O(M-7)

Cumulants of (1/n) y2

KIC((1/fl) z- 1y 2) =O(b)
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OC2((1/fl) i~=1 Y2 = O(rn'O~2

K3((1/fl) En= y 2) -n 2)O(b-3)

C(1Fn ~'_ 2) = O(n-3 )O -4 )

Mixed cumulants of Ym and (1/n) E"y

Ki~i~, (1n 1 y 2)=Qn)(1)

K2 iX,(1/nt) i=1 Y2 = O(TC 2)O(b 2)

K3 iA,(1/n) E'= Y 2') = O(n -)O(b-1)

tcl, 2 (7Am, (1/n) En'=I Y 2) = 0n20b3

K3,1(X,,(1/n) i Yi2 ) =O(n )O(b)

1C4 ,(X ( n 1 y 2) - n')O(b-3)

'C,2 (m (1n) i= Y2 = O(n 4 )~ 4

PC ,3 (, (1n) En Y2') = O(n3)O(b-4 )

K5 ,(Xm ( n 1 y 2) -4n)O(b-4)

K4,1(Xm, (1/n) i~1 
2 = O(n 5 )~ 5

K3 3 Xm (/n)~i=~y 2) -4~n)O(b-4)

I3,i(Xm, (1/n)F~ i'= =2 O(n 6 )~ 6

K5 ,(Xm (1n) ~= y2) -4)O(b-4)

IC2,3(7,, (1/n) F'= i-~ = O(n7 )~ 7

r.,(7. (1/n) i= Y2 
- (n-2 )O(b-2 )

r-25,(Xrn, (1/n) En y 2) -6n)0(b-6)
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,,,,(xn, (1/n) Yj=, Y2) = o(-)o(bn) + o(,-,-o(b-)

Mixed cumulants of m, Am, and (1/n)Y= y2

,,,i,,(X,r , (n/,) 2= ) = o( -3)(b-)

,i,i,(Xm,, m , (1/,-)E=1 Y2) =o,-)o-)

/,,(X,X , (1/,,) EIj=U Y2)= O(r,-)O(1-")

ii, 2,(AmArn, (1In) ZT 1, Y () = o(n-)O(b-)

) 2,1,1(x,X., (1/n) ZL.1 YI) = 0(n-')o(b-)

,,: 2(y,X2,(1/) Y,) - (,- 4 )o(b-)

,I,,,(x 7,,,, (1/n) Ez=, y2) = 0(n-")O(b-)
1C,21 X 2 (/)z= 1y 2) -3n)0(b1)

y -2

K3 ,, 2 (X,, X /n (1/n) 1 2' ) = O(n-4)O(b-4)

Cumulants of An,b

,(- y2,b) = y(b-)) + -()')

K2(i.,n) = o(n1-)
IC3( L,b) = 0(, -2)

Mixed cumulants of A,,,b and Xm,

Kl,,(A,b,x) = (-')O(b-')

,,2,1(.- ,b, X--- /) = 0(()(b-')

X, 2 (A.,bX) = O(n- 2)O( - ')
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"3,(A,b,',) = O(n-)O(b- ')

,C 2, 2(A,b, ',) = O(n-3 )O(b - ')

,,,, 3(ZA,b,X') = O(n- 3 )O(b-)
,,, -7., ', - 4 ,-"ob-1)

PC3,2(ZAn,b,.A*m) - 0(n )Q ki

K2 ,3(ZA,b,XY.) = O(n- 4)O(b - 2 )

,1, 4 (ZAn, X.) = O(n-)O(b-)

X 3, 3(A.,, ,m) = O(n-')O(b-2 )

IC ,4 ,(,,,Y,) = O(n-')O(b- 3 )

3.3. Johnson-Glynn Pivots

Suppose a discrete time strictly stationary process {Xi i > 1} is strongly

mixing with mixing constants {ai : i > 1). We are interested in applying the ideas

of the Johnson-Glynn pivots to obtain a confidence interval for the stationary mean

EX, where X has the same distribution as X,. Again, we assume that {Xi : i > 1Q

is zero-mean.

Our starting point is the batch means method, which we intend to modify

to obtain new confidence interval methods. The basic idea about batch means

method has been discussed in Section 3.1. Recall that, for each i, 1 < i < n,

Yj = (1/b) Eb=I X(i-,)b+j, V.,b = (1/n) F,=,(Y, - X.) 2, o,2 = m - Var(Xm), and

An,b =- V.,bl(amlb) - 1; see equations (3.2), (3.5), (3.6), and (3.7). We also define

Xm-EX
tnb (V/,b/n)i/2.(38

In this section, we will demonstrate how to calculate the first four cumulants of
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tnb.

To handle various cumulants of t n,b, note that, from equation (3.7), i',, =

(u/b){1 + An,b}. From Lemma A.12 in the Appendix, AIb converges to 0 in L2 ,

as n, b - oo. This implies that A,,b is small for large n and b. Simple algebra and

a Taylor expansion then yields

11 A2 ,_ A3 (39
-,b A,,b + n,b n,b + (3.9)

so that, from equation (3.8),

tn,b n fl"2 (ym - E) )/

m 1/ 2  1 31,..3
(X,-EX I ){1 +,b+!,b- n,b+ } (3.10)

am

It is clear that if we can calculate the various mixed cumulants of (Xm - EX),

(Xm-EX)nb,,,, (XmEX),b, ... ,etc., then we have obtained various cumulants

of tn,b.

The whole procedure is very technical and the exact results are very involved.

Basically, the idea is as follows. Notice that we assume that {X: 1 < i < m}

is zero-mean. We need to calculate various mixed cumulants of X,, XmA'n,b,
TM2 YmA3

ZmA.,6 , XmA., ... , etc. But those cumulants can be obtained after calculating

various mixed cumulants of XM and AN,b. Next, observe that from equation (3.7).

A,b = [V,,,b/(aO/b)] - 1, but from equation (3.5), V,b = (1/n) Z-=x(Y, - Xm),

2 
-2

(1/n) En I Y -X', so that we have to calculate mixed cumulants of Am, 72m, and

(1/n) = 17, which in turn can be solved by first calculating mixed cumulants
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of X and (1/n) I y}2. Notice that the order of each of these cumulants and

mixed cumulants mentioned above have been discussed in Section 3.2. Applying

these ideas, we derive the following.

Proposition 3.4. Assume that {X : i > 11 is a discrete time, strictly stationary

stochastic process with zero mean. Then

(1) If EIXII' < oc, and the sequence is mixing with a,, = 0(n-7 ), then l(t.,b) =

-(1/2)(~vb/%)K,,,(Xm, (1/n) E=, yl) + o(r-'/2)o(b-'/2).

(2) If EJXI 12 < oc, and the sequence is mixing with a, = O(n 9), then I2(t,,b) =

1 + (b/-7m) 2 iC2 ((l/n) E' Y2') - (mb/or~)r 2 ,j(--Y, (1/n) E' 1)

- E[(1/n) E' Yl(l,1b) - 1] + 3/n + o(n - ) + o(b-).

(3) If EXi 116 < oo, and the sequence is mixing with a,, O(n-11 ), then K3(tnb) =

tVMl<,.){,(.,-('l ,,,.(l ,) = /?( b))}+o(n- /)o(b-/)

(4) If EIX 121 < o, and the sequence is mixing with a, = O(n- 1 3 ), then K4(tn,b) =
-6(mb/a') 2 ,1(yX , (1/n) z:' 1  12) + 3(b/ci)j2 :((1/n) Zt_- Y2 ) + 12/n + o(')

It can also be shown that we have Ki(tn,b) = O(n-1 / 2)O(b-1 /2), K2(tn,b) =

1 + O(n- 1) + O(b-1), ?3(t,,b) = O(n-1/2 )O(b-1 / 2), and K4(tn,b) = O(n-'). We also

note that the 0(b - ') term in I 2(t,,b) would disappear should {Y: 1 < i < m} be

independent.

The first four cumulants of a standard normal random variable are 0, 1, 0.,

and 0. If we want to use a normal approximation to generate a confidence interval.

we would Like to have the cumulants of tn,b to be as close to those of the standard

normal random variable as possible.

This idea follows from Edgeworth expansion in the fohiowing sense. In the
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Edgeworth expansion for the distribution function of t n,b, the error terms have

coefficients in terms of the cumulants of t ,,b, namely, KI(t,,b), K2(t,,b) - 1, K3(ty,,b),

and ,c4(t,,b); see equation (2.31). Thus if KI(t,,b), r2(t,,b) - 1, 63(t,,,b), and r14(tl,b)

are close to zero, the effects of the error terms will be small. Notice that the

first four cumulants of a standard normal random variable are 0, 1, 0, and 0. We

remark parenthetically that requiring Kc(t,,b) -- 0, r-2(t4,b) - 1 -- 0, K3(tn,b) "- 0.

and K4(t,.b) --* 0 is the same as requiring that the first four cumulants of t,,b are

close to those of a standard normal random variable.

The above argument leads to two naive, but natural, approaches for the

choice of the batch size: (1) Minimizing max<i<4 IKr(t,) - ,c( )1. (2) Minimizing

1 ,=1~xi~n~- I ( )J2. From Proposition 3.4, KI(t,,6 ) - x1( ) = 0(n-)O(b-11'),

IC2(t..b) - 2() = O(n- ' ) + O(b-I), KC3(t,,b) -IC3( ) = O(b- 1), and r14(t,,b) - r4() =

0(n-1). In bothi cases we can see that the optimal b and n should be chosen such

that b and n are of the same order, namely, both b - O(ml/ 2 ) and n _ O(M 1 /2 )

as m -+ oc. This relationship of the batch size and the number of batches gives us

a t,,b which is closer to a standard normal random variable in the sense that the

differences between their respective first four cumulants are smaller. Hence we feel

this is a preferred choice of batch size for the traditional batch means method.

After calculating various cumulants, the formal Edgeworth expansion and

Cornish-Fisher expansion can be obtained. Notice that for fixed m, the choice

of b and n will affect both formal expansions. For n - 0(m1 /2 ) and b .- 0(m1 /2 )

the formal Edgeworth expansion is

Ft,,,(x) = t(x) + (K ( ,) _ttb))) + ( 4 (tb) r-2(t,,b) - 1

6 8 2 )z(x)

6 2

-o +47(3.11)
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and the formal Cornish-Fisher expansions are

g(tn,b) = tn,b + ( 63tnb - K(tn,b)) + (K4(tn.b) J2(tnb) - 1 t~682

-IC3(tr,b)t P K4 (tn,b) 3 ~ .. l (3.12)

and6 ,

h(~ + (K(t.,b) Ic3(tflb) ) + (K(tnlb) -1_K4(tnb))

6 2 8

+ K3(t4,b) 2 + K4(tnb) 3 ~-).(.3
6 24 ~+~'.(.3

Again we can have the following new uniqueness properties of the Cornish-

Fisher expansions for the batch means method. The proofs of the following two

propositions are similar to that of Propositions 2.1 and 2.2 and thus omitted.

Proposition 3.5. Suppose and X, are random variables, where is AN(0, 1)

and X, satisfies KIc(X,,) = 1 = 0(n-'/'), tC2(X.) = 1 + ln,,2 =1 + O(n- / 2 ),

K3X)= 1.,3 = 0(n"2/), K4(X,,) = 1.,4 = O(n-1), and ,c,(X,) 0 (n-1), i > 5.

Then,

(1) there is a polynomial of degree two, gl(X,,) = X,, + a,,o + an,lXn + an2X2

such that an,i = Q(n- 1/2 ), Z' = 0, 1, 2, and I'~i( ) - Ki( 1(iXn))j = O(n-') for

each i, 1 < i < 3. Moreover, the coefficients anj' are unique up to0(-/2.

Specifically, an,0 = -lj + (1/6)1n,3 + o(n-1/2 ), an,1 = -(1/2)1,2 + o(n-1 /2 ), and

an.2 = -(1/6)l,3 + OWn 1/2).

(2) If in addition, Ki (Xn) = o(n -1 ), i > 5, then there is a polynomnial of degree three,

92 (Xn) = Xn + an,o + an,1Xn + an2 + an,3Xl such that an,i = Q(n1) for each

i. 1 < I< 4, and JK,( ) - tc(g 2(Xn))I = o(n-1 ) for each 2i, 1 < I 4. Moreover, the
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coefficients a,,,i's are unique up to O(n-'). Specifically, a-,,o = -1.,1 + (1/6)1,,3 +

o(n-1), a,,,, = -(1/2)1,,,2 + (1/8)1,,4 + o(n-'), a,,,2 = -(1/6)1,,3 + o(n-'), and

a=,3 = -(1/24)l,,4 + o(n-).

Proposition 3.6. Suppose C and X are random variables, where is N(O, 1)

and X,, satisfies nl(X.) = /.,1 = OW(-1/ 2), IC2(X,) = 1 + 1,,2 = 1 + 0(n-l2),

ra(X,) = 1.,3 - O(n-1/2). Then,

(1) there is a polynomial of degree two, h,(C) - + an,o + aj + an, 2 C, such that

an,, = O(n-1/2 ), i = 0. 1, 2. and jI,(X,)-t,(hi(C))i = O(n- 1) for each i, 1 < I < 3.

Moreover, the coefficients a ,s are unique up to (n-1/2). Specifically, an,o =

1n,-(1/6)ln,3+o(n-/ 2), a",, = (1/2),, 2 +o(n-1/ 2), and an,2 = (i/6)l,,3+o(n-/ 2 ).

(2) If in addition ,4(X,) = ln,4 = O(n-1), then there is a polynomial of degree

three, h 2() = + + a,,,o + an,iC + an,2C2 + a,,3C3 , such taht a,,i = O(n - 1/ 2 ) for

each i, 1 < i < 4, and x,(Xn) - (h2( ))l = o(n -1 ) for each i, 1 < i < 4.

Moreover, the coefficients a.,i's are unique up to O(n-1). Specifically, a,,o = 'n,1 -

(1/6)/..3 + o(n-1), a, 1 = (1/2)n,2 - (1/8)1n,4 + o(n-'), a,, 2 = (1/6)1,,3 + o(n-1 ),

and an,3 = (1/24)[,4 + o(n- 1 ).

3.4. Confidence Intervals Generated from Johnson-Glynn Pivots

In this section, we will generate new confidence interval methods from the

Johnson-Glynn pivots and then show that the increases of the lengths of the new

confidence intervals generated by the first and second pivots are asymptotically

negligible.
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First, we discuss how to use the formal Cornish-Fisher expansions (3.12) and

(3.13) to produce confidence intervals. In our discussion, we will assume that both

b _ O(m11 2) and n _. O(m'/2), namely, b and n approach to infinity roughly at

the same rate. We remark that our results in previous two sections are stated in

orders of n and b and allow n and b to vary individually. The current choice for

b .- O(ml/ 2) and n _ O(mI/ 2) here illustrates how confidence intervals can be

generated. Other choices of n and b can be be treated in a similar fashion.

Notice that, from Proposition 3.4, the cumulants of tn,b satisfy the assumption

of Proposition 3.5. Assume that g, and 92 are the polynomials of degrees two and
three, respectively, in Proposition 3.5. Define T = 1 (t,,,) and T. 6 -2(tl,b).

Again, from Propositions 3.4 and 3.5, one can see that K1(t,,b) = O(Mn-1/2),

K2(t,,b) = 1 + O(m-'/ 2 ), K3(tn,b) = O(m-'/ 2 ), ic4 (tn,b) = O(m-1/2); Kl(Tn,b) =

O(m-'), r2(T,,b) = l+O(m-1), K,3(Tn,b) = O(M-1), tC4(T,) = O(m-1/2); tci(T,,b) =

O(m-1 ), tC2 (T,,b) = 1 + O(m-'), K3(T,,b) = O(m 1 ), and K4(Tlb) = O(m-). Thus

in terms of the distance of the differences between the first four cumulants of two

random variables, both T,,b and T ,b converge to the standard normal random vari-

able faster than t,,b.

In general, we need to estimate the cumulants of t,,,b. For convenience, we

denote, for i = 1,2, 3, 4,

k'i =_ tbT ), (3.14)

as an estimate for the ith cumulant of t ,.b. Following the terminology in Glynn

[121, we define

t,.b = (X- EX)l(V,,6 /n) 1 /2  (3.15)
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as the zeroth order pivot (the usual approach);

T,b = g1(t,,b) t--t + ('316 - ) - [(k2 - 1)/2]tn,b -('l6)tnb (3.16)

as the first order pivot; and

T;b= g2 (tn,b)

-tnb + (W3/6 - K-1) + [k'4/8 - (k - 1)/2]tn,b

- (36)t2,b - (k4/24)t3,b (3.17)

as the second order pivot. Notice that tn,b is the pivot associated with the traditional

batch means method; T,,,b is an estimate of Tb, which is the unique polynomial of

degree two of t n,b in the sense of Proposition 3.5; and, similarly, T,b is an estimate

of T,b, which is the corresponding unique polynomial of degree three of t. Thus if

the estimators k's are reasonably well-behaved, one can expect that both T,b and

T,b converge to the standard normal random variable faster than t,,b.

To construct confidence intervals it is computationally more convenient to use

the inverted Cornish-Fisher expansions (Hall [12]). For the 6-quantile point, z6 , of

the standard normal distribution function, the 100(1 - 2b)% confidence intervals

for the three pivots for the batch means method are

[-m - h'(z6)(V.,b/) 1 1 2,-m - h'(-zZ)(V,,b/n) 1 2 ], (3.18)

where h'(z) = z for t,,b; h'(z) = z + (K- - k'/6) + [('2 - 1)/2]z + (0/6)z2 for T.b;

and h'(z) = z + (0' - 0/6) + [(k2 - 1)/2 - (W'4/8)]z + (k'3/6)z2 + (4/24)z 3 for T,*,b

It follows from equation (3.18) that the lengths of these 100(1 - 26)c con-

fidence intervals are as follows: 2zs(V,,b/n)1/2 for the zeroth order pivot t,.b: 2ze(1 +
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(K2 - 1)/2)(V.,b/n)1/2 for the first order pivot T,,b; and [(1+(k2 - 1)12-(W4
(,'/12)z6](V1b/n) 1/2 for the second order pivot T We have shown in Proposi-

tion 3.4 that K2 - 1 = O(n- ') + O(b- ) and r',4 = 0(n- 1). Thus if both estimators

k' and k4 are reasonably well-behaved, then one can expect that the increase of

the length of the confidence intervals generated by the Johnson-Glynn pivots are

asymptotically negligible.

3.5. Computational Efficiency

In this section we will compare the amount of computation required for the

traditional batch means method, first and second order Johnson-Glynn pivots for

batch means method, and the regenerative method of simulation.

A direct comparison of the first two methods with the regenerative method is

difficult. For our purpose, we assume that there are m samples, which are divided

into n batches of b samples each, and there are no complete regenerative cycles

within these m samples. Note that, by strong law of large number, no ; rn/Er,

where Er is the expected length of the regenerative cycles.

We have the following observations.

(1) Generating rn samples: for many simulation studies of real world processes,

the amount of computation required of generating m samples is of the form

m - co + 0(1), where co is a constant which depends on the real world system

been simulated, implementation of the simulation program, and the computer

system used.

(2) Computing batch means: the amount of computation needed is .rn cl + 0(1).

52



where cl does not dependent on m.

(3) Computing sample mean: there are two cases, first, if the sample mean is

computed directly from the samples then the amount of computation needed

is m • c2 + 0(1); on the other hand, if the sample mean is computed after

the batch means are generated then the amount of computation needed is

n • c2 + 0(1), where c2 does not depend on either m or n.

(4) Computing sample variance: the amount of computation needed is m • c3 +

0(1), where c3, similar to co, does not depend on m.

(5) Computing K2 , I 3 , KC4 for Johnson-Glynn pivots: the amount of computation

needed is n "c4 + O(l), n "cs + O(l), and n .c 6 + 0(1), respectively, where c4, c5 .

and c6 are independent of n but are dependent on the system been simulated.

implementation of the simulation program, and the computer system used.

(6) Computing Y's and ri's for regenerative simulation: the amount of computa-

tion needed is m .c7 + 0(1), and m .C 8 + 0(1), respectively, where c7 and c8

are constants.

(7) Computing , and 7 for regenerative simulation: the amount of computation

needed is no. c9 + 0(1), and no " cl 0 + 0(1), respectively, where c9 and ci0 are

constants.

(8) Computing V, for regenerative simulation: the amount of computation needed

is no " cl1 + 0(1), where cl does not depend on no.

(9) It is easy to show that constants cl = C2 = C = C= c = c 0 . Assume

that the operations of ith power of a constant will take the same amount of

computational effort for i = 2, 3, and 4, then we have C3 = C4 = C5 = c6 .
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We have the following results.

Proposition 3.7. Under the conditions and constants specified in Observations

(1) to (9) above, the amount of computation required for confidence interval meth-

ods of simulation output analysis is as follows.

(1) Traditional ii.d. method: r(co + cl + c2) + O(1).

(2) Traditional batch means method: m(co + ci) + n(ci + c3) + O(1).

(3) First order Johnson-Glynn pivot for the batch means method: m(co + ci) +

n(c + 2c 3 ) + O(1).

(4) Second order Johnson-Glynn pivot for the batch means method: m(co + ci) +

n(ci + 3c 3 ) + 0(1).

(5) regenerative method: m(co + 2ci) + no( 2c + c11) + 0(1).

Proof: (1) Traditional i.i.d, method needs to generate samples, and compute sam-

ple mean and sample variance.

(2) Traditional batch means method needs to generate sanples, and compute batch

means, sample mean, and rc2 .

(3) First order Johnson-Glynn pivot for the batch means method needs to generate

samples, and compute batch means, sample mean, r 2 , and r.

(4) Second order Johnson-Glynn pivot for the batch means method needs to gen-

erate samples, and compute batch means, sample mean, K2, K3 , and K4 .

(5) Regenerative method needs to generate samples, and compute 1's, T's, X,, '

and V, I

It can be seen that the amount of computation required for the Johnson-Glynn

pivots for the batch means method is more than that of the traditional batch means
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method. However, the relative increments are of 0(b-'), which is asymptotically

negligible as b -- oc, for either cases.
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Chapter 4

Numerical Results

In this chapter we report the results of some Monte Carlo studies for the

coverage statistics of "normal quantile" confidence intervals based on the Johnson-

Glynn pivots tn,b, T.,b, and Tb.

4.1. Notation and Precision

Let us define 1, 12, 13 as follows: I, represents the fraction of replications for

which the exact value lies to the left of the confidence interval; 12 represents the

fraction that lies in the confidence interval; and 13 represents the fraction that lies

to the right of the confidence interval. Thus 12 is the usual coverage fraction, and

11 and 13 are the one-sided coverage probabilities.

For each of our examples, we make 2500 independent replications and report

empirical coverage fractions 1, 12, 13, sample mean of the length of the confi-

dence interval (SM), sample standard deviation of the length of the confidence

interval (SSD), and sample coefficient of variation of the length of the confidence

interval (SCV), which is the ratio of sample standard deviation over sample mean

(SSD/SM).

Notice that the empirical coverage fractions are essentially the sample means

of i.i.d. binomial random variables with suitable parameter p. For 2500 replications

and a 90% confidence interval, I, and 13 are the sample means of 2500 i.i.d. binomial
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random variables with p approximately equal to 0.05 (5%), which has standard

deviation about 0.00436 (0.44%). Similarly, for 12 the p value of the corresponding

i.i.d. binomial random variables is approximately 0.90 (90%), thus the standard

deviation of the sample mean is 0.006 (0.6%). These are, we feel, acceptable levels

of accuracy for such experiment.

4.2. Examples

Example 4.1. Let Y1,..., Y, be i.i.d. random variables with distribution func-

tion P(Y > y) = 1 - - -  y < 0; 0, otherwise. (We remark parenthetically

that this distribution function happens to be the stationary distribution of the

waiting times in an M/M/1 queue with mean interarrival time 1/A and mean ser-

vice time .Ii;.) See Table 1 for the empirical results of the coverage rate for five

different methods of output analysis.

Example 4.2. Let Y I,..., Y,, be i.i.d. random variables with distribution func-

tion P(Y > y) = e- (I+l), y > -1; 0, otherwise. Thus each Y is a centered-

exponential random variable with parameter 1. This example was studied in Efron

[11] and Glynn [12]. See Table 2 for the empirical results.

Example 4.3. Let Xl,..., X,,, be samples from an autoregressive model of order

one such that, for each i, Xi+I = 0.5X + c+j, where the residuals ci's are centered-

exponential random variables discussed at Example 4.2. This example was studied

in Titus [25]. See Tables 3 and 4 for the empirical results.

Example 4.4. Let { W i > 1} be a sequence of waiting times in an Al/Al/i

queue with arrival rate A = 0.5 and service rate y = 1. This example was also
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studied in Glynn [12] and Titus [25]. To see the effect of initial conditions, we

choose several different initial random variable W1 . Let W be the random variable

distributed as the stationary waiting times. Those cases we consider include: W1 =

0; W = W; W, = EW; and W = 2EW. See Tables 5 to 12 for the empirical

results.

4.3. Discussion of Numerical Results

Note that in our numerical examples, essentially in every case there is some

improvement in actual coverage fraction 12 from zeroth order pivot (the traditional

batch means method) to the first and second order pivots. As a matter of fact,

Table 1 shows that for our Example 1, the first order Johnson-Glynn pivot com-

petes favorably with the method of known variance. In addition, the first and

second order pivots tend to balance the one-sided coverage probabilities I1 and 13,

moving them towards their desired values of 0.05 (5%). This confirms the asym-

metry corrections induced by the Johnson-Glynn pivotal transformations. On the

other hand, we note that a confidence interval with balanced one-sided coverage

probabilities does not necessarily have the shortest possible length.

One may notice that in our simulation results, the second order Johnson-

Glynn pivot only provides a level of coverage fraction comparable with that of the

first order pivot. One reason for this is that in our analysis, we use the formal

Cornish-Fisher expansion for t,,b in deriving both pivots T.,b and T .b. In this

way, T,,b is a function of tn,b and its sample cumulants, instead of that of the first

order pivot T,,.b. Hence the T,*,b we derive has a potential of improvement over t ,.b.

instead of that of T,.b. There is, however, another approach in deriving the second
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order pivot. If we can derive the formal Cornish-Fisher expansion of T,,6, then the

second order pivot T,b is then a function of T, 6 and its sample cumulants. By the

same idea the first order pivot T,b corrects some effects of estimation errors and

the skewness effect associated with tn,b, T,*,b may correct those estimation errors

and the skewness effect in the estimation of the first order pivot. Although the

second approach is preferable from a theoretical point-of-view, the derivation of an

additional pivot from Tn,b will be much more difficult.

To examine the effects of nonstationarity and the impact of different initial

conditions, we choose several initial random variable VVI in the simulation of Exam-

ple 4.4. Let W be the random variable distributed as the stationary waiting times.

Those cases we consider include: W1 = 0; W1 -= W; W, = EW; and W = 2EW.

As we can see empirically from Tables 5 to 12, for the waiting times of an M/M/1

queue, both the nonstationarity and the different initial conditions have only a very

insignificant effect on the coverage fraction, one-sided coverage probabilities, and

the length of the confidence intervals. Further efforts will be needed to verify this

theoretically.

We can also observe that the Johnson-Glynn pivots produce longer confidence

intervals on average, and these confidence intervals, in general, are more variable

than those of the traditional batch means method. However, as shown in Chapter

3, the increase of length in confidence intervals is asymptotically negligible as n

and b increase. Moreover, due to the fact that many confidence intervals produced

from the traditional batch means method do have an undercoverage problem, this

increase of length seems to be a necessity rather than a liability. The more vari-

able confidence intervals produced by the Johnson-Glynn pivots are also a natuial
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property associated with these correction methods. Since the correction terms are

stochastic, in general more constants need to be estimated and then additional

variance is introduced.
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Table 1. Coverage Fraction for Example 4.1.

Sample Size (rn) normal t first second known variance
5 0.6604 0.7620 0.7740 0.7904 0.9312

10 0.7588 0.7912 0.8512 0.8472 0.9180
15 0.8092 0.8260 0.8928 0.8892 0.9152
20 0.8324 0.8464 0.8992 0.8956 0.9080
25 0.8412 0.8532 0.9012 0.8976 0.8988

* 2500 independent replications
* normal: batch means method with normal quantiles
* t: batch means method with t quantiles

* first: first order Johnson-Glynn pivot
* second: second order Johnson-Glynn pivot
* known variance: batch means method with known variance

b 6 = 1., since independently identical observations
* Coverage fraction for the first order pivot competes favorably with that of the

batch means method with known variance
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Table 2. Coverage Fraction for Centered-Exponential Random Variables.

Sample Coverage Fraction Length of C.I.
Size (n) Pivot I1 13 SM SSD SCV

normal 0.0408 0.7140 0.2452 1.12 0.65 0.58
t 0.0188 0.7864 0.1948 1.45 0.84 0.58

5 first 0.0152 0.8220 0.1628 1.61 1.01 0.63
second 0.0160 0.8188 0.1652 1.58 0.98 0.62
normal 0.0308 0.7904 0.1788 0.91 0.39 0.42

t 0.0188 0.8252 0.1560 1.01 0.43 0.42
10 first 0.0216 0.8660 0.1124 1.17 0.58 0.49

second 0.0216 0.8652 0.1132 1.15 0.56 0.48

normal 0.0276 0.8276 0.1448 0.78 0.27 0.34
t 0.0176 0.8488 0.1336 0.84 0.29 0.34

15 first 0.0264 0.8884 0.0852 0.96 0.39 0.41
second 0.0264 0.8880 0.0856 0.94 0.38 0.40
normal 0.0240 0.8548 0.1212 0.69 0.21 0.30

t 0.0192 0.8668 0.1140 0.73 0.22 0.30
20 first 0.0244 0.8992 0.0764 0.82 0.29 0.36

second 0.0264 0.8952 0.0784 0.81 0.28 0.35
normal 0.0228 0.8632 0.1144 0.63 0.17 0.27

t 0.0184 0.8744 0.1072 0.65 0.18 0.27
25 first 0.0272 0.8984 0.0744 0.72 0.24 0.32

second 0.0284 0.8968 0.0748 0.72 0.23 0.32

* 2500 independent replications
* SM: sample mean
* SSD: sample standard deviation

e SCV: sample coefficient of variation
* Lormal: batch means method with normal quantiles
e t: batch means method with t quantiles

* first: first order Johnson-Glynn pivot
* second: second order Johnson-Glynn pivot
* Both first and second order pivots improve coverage fraction 12

* One-sided coverage probabilities I1 and 13 of the first and second order pivots
are more balanced
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Table 3. Coverage Fraction for An AR(1) Process.

Batch Coverage Fraction Length of C .I.
Size (b) Pivot 1, 12 13 SM SSD SCV

normal 0.0788 0.7900 0.1312 0.36 0.055 0.16
t 0.0768 0.7936 0.1296 0.36 0.056 0.16

2 first 0.0932 0.8000 0.1068 0.37 0.063 0.17
second 0.0936 0.7992 0.1072 0.37 0.062 0.17
normal 0.0568 0.8364 0.1068 0.34 0.066 0.19

t 0.0496 0.8524 00980 0.35 0.068 0.19
4 first 0.0608 0.8592 0.0800 0.37 0.084 0.23

second 0.0620 0.8580 0.0800 0.37 0.082 0.22
normal 0.0548 0.8460 0.0992 0.33 0.070 0.22

t 0.0464 0.8664 0.0872 0.34 0.074 0.22
6 first 0.0488 0.8764 0.0748 0.36 0.092 0.25

second 0.0520 0.8728 0.0752 0.36 0.089 0.25
normal 0.0464 0.8624 0.1188 0.32 0.077 0.24

t 0.0384 0.8788 0.0828 0.34 0.082 0.24
8 first 0.0408 0.8912 0.0736 0.36 0.10 0.28

second 0.0424 0.8892 0.0748 0.36 0.099 0.28
normal 0.0540 0.8492 0.0968 0.30 0.078 0.26

t 0.0380 0.8832 0.0788 0.33 0.085 0.26
10 first 0.0380 0.8968 0.0652 0.36 0.11 0.30

second 0.0388 0.8948 0.0664 0.35 0.10 0.29
ncrmal 0.0568 0.8312 0.1132 0.29 0.086 0.30

t 0.0356 0.8812 0.0832 0.33 0.099 0.30
15 first 0.0340 0.8944 0.0676 0.36 0.12 0.32

second 0.0344 0.8920 0.0680 0.35 0.11 0.32

X+ = 0.5 Xi + 6i+1

* -: centered-exp(1)

. X 1 =0
e 5tmple size: m = 120

* 2500 independent replications
* normal: batch means method with normal quantiles
* t: batch means method with t quantiles

* first: first order Johnson-Glynn pivot
* second: second order Johnson-Glynn pivot
* Both first and second order pivots improve coverage fraction 12

o One-sided coverage probabilities I, and 13 of the first and second order pivots
are more balanced
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Table 4. Coverage Fraction for An AR(1) Process.

Batch Coverage Fraction Length of C.I.
Size (b) Pivot 1 12 13 SM SSD SCV

normal 0.0860 0.7884 0.1256 0.26 0.029 0.11
t 0.0856 0.7904 0.1240 0.26 0.029 0.11

2 first 0.1000 0.7924 0.1076 0.26 0.032 0.12
second 0.1004 0.7920 0.1076 0.26 0.031 0.12
normal 0.0568 0.8496 0.0936 0.25 0.034 0.14

t 0.0536 0.8548 0.0916 0.25 0.034 0.14
4 first 0.0644 0.8580 0.0776 0.26 0.039 0.15

second 0.0648 0.8572 0.0780 0.26 0.038 0.15
normal 0.0488 0.8628 0.0884 0.24 0.037 0.16

t 0.0444 0.8696 0.0860 0.25 0.038 0.16
6 first 0.0548 0.8688 0.0764 0.25 0.045 0.18

second 0.0556 0.8676 0.0768 0.25 0.044 0.17
normal 0.0488 0.8664 0.0848 0.23 0.040 0.17

t 0.0444 0.8768 0.0788 0.24 0.042 0.17
8 first 0.0476 0.8832 0.0692 0.25 0.050 0.20

second 0.0492 0.8816 0.0692 0.25 0.049 0.20
normal 0.0468 0.8668 0.0864 0.23 0.041 0.18

t 0.0388 0.8828 0.0784 0.24 0.043 0.18
10 first 0.0440 0.8904 0.0656 0.25 0.051 0.21

second 0.0452 0.8892 0.0656 0.25 0.050 0.20
normal 0.0536 0.8652 0.0812 0.22 0.047 0.22

t 0.0412 0.8856 0.0732 0.23 0.050 0.22
15 first 0.0452 0.8884 0.0664 0.24 0.060 0.24

second 0.0456 0.8876 0.0668 0.24 0.058 0.24

SX+I = 0.5 X, + C,+I

* e,: centered-exp(1)

0 X=0
* sample size: m = 240

e 2500 independent replications
a normal: batch means method with normal quantiles
e t: batch means method with t quantiles
* first: first order Johnson-Glynn pivot
* second: second order Johnson-Glynn pivot
e Both first and second order pivots improve coverage fraction 12

* One-sided coverage probabilities I, and 13 of the first and second order pivots
are more balanced
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Table 5. Coverage Fraction for M/M/1 Waiting Times.

Batch Coverage Fraction Length of C.I.
Size (b) Pivo: 11 12 13 SM SSD SCV

normal 0.0456 0.8104 0.1440 0.45 0.15 0.33
t 0.0412 0.8200 0.1388 0.46 0.15 0.33

20 first 0.0608 0.8408 0.0984 0.52 0.21 0.40
second 0.0644 0.8368 0.0988 0.51 0.20 0.39
normal 0.0392 0.8208 0.1400 0.47 0.16 0.35

t 0.0376 0.8268 0.1356 0.48 0.17 0.35
25 first 0.0520 0.8568 0.0912 0.54 0.28 0.43

second 0.0540 0.8524 0.0934 0.53 0.22 0.42
normal 0.0356 0.8272 0.1372 0.48 0.19 0.39

t 0.0292 0.8400 0.1308 0.50 0.19 0.39
40 first 0.0400 0.8668 0.0932 0.57 0.29 0.50

second 0.0416 0.8648 0.0936 0.56 0.28 0.49
normal 0.0372 0.8212 0.1416 0.48 0. 19 0.40

t 0.0292 0.8408 0.1300 0.51 0.20 0.40
50 first 0.0420 0.8608 0.0972 0.58 0.29 0.50

second 0.0440 0.8584 0.0976 0.57 0.28 0.49
normal 0.0388 0.8124 0.1488 0.48 0.21 0.44

t 0.0260 0.8492 0.1248 0.53 0.23 0.44
100 first 0.0284 0.8764 0.0952 0.60 0.32 0.53

second 0.0296 0.8744 0.0960 C.9 0.31 0.52
normal 0.0484 0.7980 0.1536 0.47 0.22 0.47

t 0.0300 0.8432 0.1268 0.54 0.25 0.47
125 first 0.0312 0.8672 0.1016 0.61 0.34 0.56

second 0.0332 0.8636 0.1032 0.60 0.33 0.55

* M/M/1 waiting times

Sp = 0.5
SWI = IV
* {W i > 1} is stationary
* sample size: m = 1000

* 2500 independent replications
* normal: batch means method with normal quantiles
* t: batch means method with t quantiles
* first: first order Johnson-Glynn pivot
* second: second order Johnson-Glynn pivot
* Both first and second order pivots improve coverage fraction I2

* One-sided coverage probabilities I, and 13 of the first and second order pivots
are more balanced
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Table 6. Coverage Fraction for M/M/1 Waiting Times.

Batch Coverage Fraction Length of C.I.
Size (b) Pivot 1, 12 13 SM SSD SCV

normal 0.0476 0.8224 0.1300 0.32 0.082 0.25
t 0.0464 0.8256 0.1280 0.33 0.083 0.25

20 first 0.0656 0.8372 0.0972 0.36 0.10 0.29
second 0.0680 0.8348 0.0972 0.35 0.10 0.29
normal 0.0400 0.8336 0.1264 0.34 0.089 0.27

t 0.0392 0.8348 0.1260 0.34 0.090 0.27
25 first 0.0568 0.8512 0.0920 0.37 0.12 0.32

second 0.0580 0.8500 0.0920 0.37 0.11 0.31
normal 0.0336 0.8436 0.1228 0.35 0.10 0.30

t 0.0308 0.8488 0.1204 0.36 0.11 0.30
40 first 0.0492 0.8652 0.0856 0.39 0.15 0.38

second 0.0504 0.8624 0.0872 0.39 0.14 0.37
normal 0.0300 0.8484 0.1216 0.35 0.11 0.31

t 0.0292 0.8516 0.1192 0.38 0.11 0.31
50 first 0.0448 0.8692 0.0860 0.40 0.16 0.39

second 0.0468 0.8660 0.0872 0.40 0.15 0.38
normal 0.0324 0.8480 0.1196 0.36 0.12 0.34

t 0.0252 0.8620 0.1128 0.38 0.13 0.34
100 first 0.0340 0.8788 0.0872 0.42 0.18 0.42

second 0.0380 0.8748 0.0872 0.41 0.17 0.41
normal 0.0376 0.8328 0.1296 0.35 0.13 0.36

t 0.0288 0.8516 0.1196 0.38 0.14 0.36
125 first 0.0356 0.8720 0.0924 0.42 0.19 0.46

second 0.0360 0.8712 0.0928 0.42 0.19 0.44

" M/M/1 waiting times
" p= 0 .5

R, W

{W i > 1} is stationary

* sample size: ra = 2000
* 2500 independent replications
* normal: batch means method with normal quantiles
e t: batch means method with t quantiles
* Both first and second order pivots improve coverage fraction 12

9 One-sided coverage probabilities I, and 13 of the first and second order pivots
are more balanced
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Table 7. Coverage Fraction for M/M/1 Waiting Times.

Batch Coverage Fraction Length of C.I.
Size (b) Pivot 1, I 13 SM SSD SCV

normal 0.0428 0.8068 0.1504 0.45 0.15 0.33
t 0.0396 0.8152 0.1452 0.46 0.15 0.33

20 first 0.0592 0.8428 0.0980 0.51 0.20 0.40
second 0.0624 0.8380 0.0996 0.51 0.20 0.39
normal 0.0368 0.8192 0.1440 0.46 0.16 0.35

t 0.0344 0.8268 0.1388 0.47 0.17 0.35
25 first 0.0500 0.8532 0.0968 0.53 0.23 0.43

second 0.0544 0.8480 0.0976 0.53 0.22 0.42
normal 0.0336 0.8216 0.1448 0.48 0.19 0.39

t 0.0284 0.8336 0.1380 0.50 0.19 0.39
40 first 0.0392 0.8648 0.0960 0.57 0.29 0.50

second 0.0412 0.8620 0.0968 0.54 0.27 0.49
normal 0.0336 0.8204 0.1460 0.48 0.19 0.40

t 0.0288 0.8344 0.1368 0.50 0.20 0.40
50 first 0.0392 0.8604 0.1004 0.58 0.29 0.50

second 0.0412 0.8580 0.1008 0.57 0.28 0.49
normal 0.0360 0.8104 0.1536 0.47 0.21 0.44

t 0.0248 0.8464 0.1288 0.53 0.23 0.44
100 first 0.0280 0.8752 0.0968 0.60 0.22 0.53

second 0.0284 0.8732 0.0984 0.59 0.31 0.52
normal 0.0440 0.7968 0.1592 0.47 0.22 0.47

t 0.0272 0.8412 0.1316 0.54 0.25 0.47
125 first 0.0296 0.8632 0.1072 0.60 0.34 0.56

second 0.0316 0.8592 0.1092 0.60 0.33 0.55

* M/M/1 waiting times
Sp = 0.5

* WI = 0

S{W, i > 1} is only asymptotically stationary
* sample size: m = 1000

* 2500 independent replications
* normal: batch means method with normal quantiles
* t: batch means method with t quantiles

* first: first order Johnson-Glynn pivot
• second: second order Johnson-Glynn pivot
* Both first and second order pivots improve coverage fraction 12

* One-sided coverage probabilities 1, and 13 of the first and second order pivots
are more balanced
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Table 8. Coverage Fraction for M/M/1 Waiting Times.

Batch Coverage Fraction Length of C.I.
Size (b) Pivot 1 12 13 SM SSD SCV

normal 0.0456 0.8216 0.1329 0.33 0.082 0.25
t 0.0452 0.8228 0.1320 0.33 0.083 0.25

20 first 0.0640 0.8372 0.0988 0.36 0.10 0.29
second 0.0660 0.8340 0.1000 0.35 0.10 0.29
normal 0.0376 0.8336 0.1288 0.34 0.089 0.27

t 0.0368 0.8356 0.1276 0.34 0.090 0.27
25 first 0.0560 0.8520 0.0920 0.37 0.12 0.32

second 0.0572 0.8500 0.0928 0.37 0.11 0.31
normal 0.0332 0.8416 0.1252 0.35 0.10 0.30

t 0.0308 0.8472 0.1220 0.36 0.11 0.30
40 first 0.0464 0.8672 0.0864 0.39 0.15 0.38

second 0.0476 0.8652 0.0872 0.39 0.14 0.37
normal 0.0304 0.8456 0.1240 0.35 0.11 0.31

t 0.0272 0.8516 0.1212 0.36 0.11 0.31
50 first 0.0420 0.8680 0.0868 0.40 0.16 0.39

second 0.0452 0.8840 0.0884 0.40 0.15 0.38
normal 0.0348 0.8472 0.1236 0.36 0.12 0.34

t 0.0228 0.8628 0.1144 0.37 0.13 0.34
100 first 0.0316 0.8760 0.0924 0.42 0.18 0.42

second 0.0352 0.8724 0.0924 0.41 0.17 0.41
normal 0.0348 0.8324 0.1328 0.35 0.13 0.36

t 0.0268 0.8520 0.1212 0.38 0.13 0.36
125 first 0.0336 0.8704 0.0960 0.42 0.19 0.46

second 0.0336 0.8700 0.0964 0.42 0.18 0.44

* M/M/1 waiting times
* p = 0.5
SW,= 0

e {W : i _ 1} is only asymptotically stationary
• sample size: m = 2000
a 2500 independent replications
* normal: batch means method with normal quantiles
* t: batch means method with t quantiles
e first: first order Johnson-Glynn pivot
* second: second order Johnson-Glynn pivot
* Both first and second order pivots improve coverage fraction 12

* One-sided coverage probabilities 1, and 13 of the first and second order pivots
are more balanced
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Table 9. Coverage Fraction for M/M/1 Waiting Times.

Batch Coverage Fraction Length of C.I.
Size (b) Pivot 1, 12 13 SM SSD SCV

normal 0.0440 0.8092 0.1468 0.45 0.15 0.33
t 0.0400 0 .- 202312 0.1388 0.46 0.15 0.33

20 first 0.0600 0.8440 0.0960 0.51 0.20 0.40
second 0.0636 0.8392 0.0972 0.51 0.20 0.39
normal 0.0380 0.8220 0.1400 0.46 0.16 0.35

t 0.0348 0.8288 0.1364 0.47 0.17 0.35
25 first 0.0524 0.8516 0.0960 0.53 0.23 0.42

second 0.0560 0.8472 0.0968 0.53 0.22 0.41
normal 0.0344 0.8256 0.1400 0.48 0.19 0.39

t 0.0292 0.8348 0.1360 0.50 0.19 0.39
40 first 0.0396 0.8672 0.0932 0.57 0.28 0.50

second 0.0420 0.8640 0.0940 0.56 0.27 0.49
normal 0.0344 0.8232 0.1424 0.48 0.19 0.40

t 0.0288 0.8388 0.1324 0.50 0.20 0.40
50 first 0.0404 0.8608 0.0988 0.58 0.29 0.50

second 0.0428 0.8576 0.0996 0.57 0.28 0.49
normal 0.0388 0.8108 0.1504 0.47 0.21 0.44

t 0.0252 0.8492 .0.1252 0.53 0.23 0.44
100 first 0.0284 0.8780 0.0936 0.60 0.32 0.53

second 0.0296 0.8748 0.0956 0.59 0.31 0.52
normal 0.0456 0.7972 0.1572 0.47 0.22 0.47

t 0.0280 0.8436 0.1284 0.54 0.25 0.47
125 first 0.0312 0.8652 0.1036 0.60 0.34 0.56

second 0.0324 0.8628 0.1048 0.60 0.33 0.55

* M/M/i waiting times
Sp = 0.5

W W1=EW

S{W: i > 1} is only asymptotically stationary
* sample size: m = 1000

* 2500 independent replications
* normal: batch means method with normal quantiles
* t: batch means method with t quantiles
* first: first order Johnson-Glynn pivot
* second: second order Johnson-Glynn pivot
* Both first and second order pivots improve coverage fraction 12

* One-sided coverage probabilities I, and 13 of the first and second order pivots
are more balanced
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Table 10. Coverage Fraction for M/M/1 Waiting Times.

Batch Coverage Fraction Length of C.I.
Size (b) Pivot 1, 12 13 SM SSD SCV

normal 0.0468 0.8212 0.1320 0.33 0.082 0.25
t 0.0452 0.8240 0.1308 0.33 0.083 0.25

20 first 0.0648 0.8388 0.0964 0.36 0.10 0.29
second 0.0664 0.8364 0.0972 0.35 0.10 0.29
normal 0.0388 0.8332 0.1280 0.34 0.089 0.26

t 0.0376 0.8352 0.1272 0.34 0.090 0.26
25 first 0.0572 0.8516 0.0912 0.37 0.12 0.32

second 0.0580 0.8500 0.0920 0.37 0.11 0.31
normal 0.0332 0.8436 0.1232 0.35 0.10 0.30

t 0.0316 0.8488 0.1196 0.36 0.11 0.30
40 first 0.0476 0.8668 0.0856 0.39 0.15 0.38

second 0.0484 0.8652 0.0864 0.39 0.14 0.37
normal 0.0308 0.8456 0.1236 0.35 0.11 0.31

t 0.0276 0.8524 0.1200 0.36 0.11 0.31
50 first 0.0428 0.8712 0.0860 0.40 0.16 0.39

second 0.0464 0.8656 0.0880 0.40 0.15 0.38
normal 0.0304 0.8476 0.1220 0.36 0.12 0.34

t 0.0228 0.8644 0.1128 0.37 0.13 0.34
100 first 0.0336 0.8760 0.0904 0.42 0.18 0.42

second 0.0360 0.8728 0.0912 0.41 0.17 0.41
normal 0.0352 0.8332 0.1316 0.35 0.13 0.36

t 0.0272 0.8524 0.1204 0.38 0.13 0.36
125 first 0.0336 0.8720 0.0944 0.42 0.19 0.46

second 0.0340 0.8708 0.0952 0.42 0.18 0.44

* M/M/1 waiting times
* p = 0.5
* f W= EW

* {W' : i > 1} is only asymptotically stationary
• sample size: m = 2000

e 2500 independent replications
* normal: batch means method with normal quantiles
* t: batch means method with t quantiles
* Both first and second order pivots improve coverage fraction 12

* One-sided coverage probabilities I, and 13 of the first and second order pivots
are more balanced
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Table 11. Coverage Fraction for M/M/1 Waiting Times.

Batch Coverage Fraction Length of C.I.
Size (b) Pivot 1, 12 13 SM SSD SCV

normal 0.0452 0.8164 0.1384 0.45 0.15 0.33
t 0.0412 0.8248 0.1340 0.46 0.15 0.33

20 first 0.0640 0.8444 0.0920 0.52 0.20 0.40
second 0.0672 0.8400 0.0916 0.51 0.20 0.39
normal 0.0392 0.8244 0.1364 0.46 0.16 0.35

t 0.0356 0.8316 0.1328 0.48 0.17 0.35
25 first 0.0540 0.8544 0.0916 0.54 0.23 0.42

second 0.0572 0.8492 0.0936 0.53 0.22 0.41
normal 0.0356 0.8276 0.1368 0.48 0.19 0.39

t 0.0308 0.8396 0.1296 0.50 0.19 0.39
40 first 0.0420 0.8672 0.0908 0.57 0.29 0.50

second 0.0440 0.8644 0.0916 0.56 0.27 0.49
normal 0.0384 0.8240 0.1376 0.48 0.19 0.40

t 0.0300 0.8424 0.1276 0.50 0.20 0.40
50 first 0.0428 0.8640 0.0932 0.58 0.29 0.50

second 0.0440 0.8612 0.0948 0.57 0.28 0.49
normal 0.0400 0.8152 0.1448 0.47 0.21 0.44

t 0.0260 0.8536 0.1204 0.53 0.23 0.44
100 first 0.0292 0.8824 0.0884 0.60 0.32 0.53

second 0.0304 0.8800 0.0896 0.59 0.31 0.52
normal 0.0476 0.7996 0.1528 0.47 0.22 0.47

t 0.0308 0.8468 0.1224 0.54 0.25 0.47
125 first 0.0324 0.8688 0.0988 0.61 0.34 0.56

second 0.0324 0.8672 0.1004 0.60 0.33 0.55

* M/M/1 waiting times
Sp = 0.5

* W1 = 2 EW
{W, : i > 1} is only asymptotically stationary

* sample size: m = 1000

* 2500 independent replications
* normal: batch means method with normal quantiles
* t: batch means method with t quantiles
* first: first order Johnson-Glynn pivot
• second: second order Johuson-Glynn pivot
* Both first and second order pivots improve coverage fraction 12

* One-sided coverage probabilities I, and 13 of the first and second order pivots
are more balanced
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Table 12. Coverage Fraction for M/M/1 Waiting Times.

Batch I Coverage Fraction Length of C.I.
Size (b) Pivot _1 2 13 SM SSD SCV

normal 0.0488 0.8204 0.1308 0.33 0.082 0.25
t 0.0472 0.8240 0.1288 0.33 0.083 0.25

20 first 0.0664 0.8396 0.0940 0.36 0.10 0.29
second 0.0704 0.8348 0.0948 0.35 0.10 0.29
normal 0.0408 0.8344 0.1248 0.34 0.089 0.27

t 0.0380 0.8388 0.1232 0.34 0.090 0.27
25 first 0.0580 0.8540 0.0880 0.37 0.12 0.32

second 0.0592 0.8512 0.0896 0.37 0.11 0.31
normal 0.0352 0.8436 0.121Z 0.35 0.10 0.30

t 0.0328 0.8496 0.1176 0.36 0.11 0.30
40 first 0.0484 0.8684 0.0832 0.39 0.15 0.38

second 0.0496 0.8668 0.0836 0.39 0.14 0.37
normal 0.0320 0.8476 0.1204 0.35 0.11 0.31

t 0.0276 0.8568 0.1156 0.36 0.11 0.31
50 first 0.0440 0.8712 0.0844 0.40 0.16 0.39

second 0.0472 0.8672 0.0856 0.40 0.15 0.38
normal 0.0316 0.8500 0.1184 0.36 0.12 0.34

t 0.0236 0.8664 0.1100 0.37 0.13 0.34
100 first 0.0352 0.8784 0.0864 0.42 0.18 0.42

second 0.0368 0.8752 0.0880 0.41 0.17 0.41
normal 0.0364 0.8348 0.1288 0.35 0.13 0.36

t 0.0276 0.8564 0.1160 0.38 0.13 0.36
125 first 0.0348 0.8732 0.0920 0.42 0.19 0.46

second 0.0356 0.8724 0.0920 0.42 0.18 0.44

* M/M/1 waiting times

0 p = 0.5
* Wi =2EW

a {W : i > 1} is only asymptotically stationary
e sample size: m = 2000
* 2500 independent replications
e normal: batch means method with normal quantiles
e t: batch means method with t quantiles
e first: first order Johnson-Glynn pivot
9 second: second order Johnson-Glynn pivot
9 Both first and second order pivots improve coverage fraction 12

* One-sided coverage probabilities I, and 13 of the first and second order pivots
are more balanced
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Chapter 5

Conclusion

As the use of simulation becomes more popular, the need for a method of

simulation output analysis that can be applied to a large class of stochastic processes

becomes more important.

In this dissertation, we have derived a uniqueness property of Cornish-Fisher

expansions, the formal Edgeworth expansion for the batch means method, Johnson-

Glynn pivots and the associated confidence intervals for the batch means method,

and detailed procedures of implementation.

Johnson-Glynn pivotal transformations have provided a r-_w way of generat-

ing confidence intervals. In applying this approach to the batch means method,

they appear to behave well empirically and seem to be a robust procedure for the

examples in Chapter 4. To verify the general applicability of this method, many

more examples should be run.

However, there are three possible drawbacks from a practical point-of-view:

more computation time needed, longer confidence intervals on average, and more

variable intervals.

On the other hand, as shown in Chapter 3, the increase of computing time is

relatively small, and the increase of length in confidence interval is asymptotically

negligible as n and b increase. Moreover, due to the fact that many confidence

intervals do have an undercoverage problem, this increase of length seems to be a

necessity rather than a liability.
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We would like to r oint out some potential areas for future research and de-

velopment. First, although the assumptions we make are reasonable, we may want

to relax the assumptions we made on stationarity, either by including the initial

condition or considering asymptotically stationary processes. Second, it is possible

that the Johnson-Glynn pivots can be applied to overlapping batch means method.

Another interesting possibility is to apply the same procedure to the ratio esti-

mator of a weakly regenerative process. Finally, we may want to run many more

numerical examples to verify the general applicability of this method.
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Appendix

Proof of Proposition 2.1: (1) Suppose gi(X,,) =X, + a,,,o + a,iX, + a, X

where a, 0 (n-/ 2 ), i1= 0, 1, and 2. Then K, (g, (X,)) = EX,, + an,0 + an,1EXn +

an,2.Y = In + an,0 + an,2 + 0(n-1), IC2(gi(Xn)) = 1 + 2an.1 + lt,2 + O(n-1),

KC3 (gi(X.)) = ln, 3 +6an, 2 +(n-1). Notice that K = 0, K2 ( ~) = 1, and K.3 ( ) = 0.

If we need IK,( ) - tci(gj(XVn))I = 0(n-1) for each i,1 <-i 3, the unique solution

of a,'s in gl(X'A'), up to order Q(n- 1/2 ) is such that an,o= -lj + In.3/6 + 0(n-1),

aj= O'n-1), and an,2 = -In,3/6 + Q~n-'.

(2) Suppose g2 (X,,) = X,, + an,O + an,lXn + an,2Xn + an3 and a, = Q(n-/ 2 for

i = 0, 1, 2, and 3. Then Kl(g 2(XY,)) = 41,j + an, + an,il1,i + an,2 + an,3ln,3 + o(n'1),

K2(g2(Xn)) =, I5~, + aj a2 2 af,21n,3 + 4a,.I~ + 6a~,3
n 1I a, 1 ±a, + 1,2 + 2an2 + 1a,3+2

6an,jan,3 + o(n-'), tC3(g2(X,1 )) = 4,3 + 3an,1n, + 6a.,2 + l 2anla,2 + 2 7an,3ln,3 +

18an,3ln,1 + o(n-1), tc4(g2(,Yn)) = 4 + 24an,241, 3 + 24an,3 + 72an,lan,3 + 48a 2 +

432an ,3 + o(n-1 ). If we need J/Ci( ) - Ki(g 2(Xn))t = o(n- 1) for each i, 1 < i < 4,

the unique solution of a,'s in g2 (Xn), up to order 0(n-1) is such that a, 0 =

- 4 1 ,i + In,3/6 + o(n-'), an,1 = -1n,2/2 + 1,11,3/3 + 4,4/8 - (7/36 )12,2 + o(n-'),

an,2 = -1,3/6 + o(n-1), and a,,,3 = -41,4/24 + 'n2,3/9 + o(n-1).D

Proof of Proposition 2.2: (1) Suppose hj( T) = + a,,O + a,,, + an2 2 where

a, = Q(n- 1/2 ), 1 = 0, 1, and 2. Then Kj(hj( )) = an,0 + an,2, K2(h1 ( )) = 1 +

2a,, + O(nr')- K3(hi( )) = 6an,2 + 0(n-1). Notice that Kl(An) = 0, K2(Xn) =1



and Pc3(X.) = l,3 = 0(n-'/). If we need jxi(X=) - i,(hj())J = O(n-1 ) for each

i, 1 < i < 3, the unique solution of a;'s in h1( ), up to order 0(n - /2 ) is such that

ano = l,1 - 1,3/6 + O(n-'), an, = O(n-1), and an,2 = 1,,3/6 + O(n-1).

(2) Suppose h2() = +ano + a,,l + a,,22 +a,,3f 3 , and ai = O(n- 1/2) for i =- 0, 1,

2, and 3. Then K,(h 2( )) = an,O + an, 2, K2 (h2()) = 1 + 2a, +an + 2an.2 + 15an 3 +

6a,,3 + 6anja,,3, K3 (h2(0)) = 6an,2 + 12an,lan,2 + 72an,2an,3 + o(n-'), K4(h2()) =
22, -). If we need fx,(X,)-xj(h 2( ))j = o(n - 1 )

for each i, 1 < i < 4, the unique solution of ai's in h2( ), up to order O(n-1) is

such that a,,o = l,. - 1,,3/6 + o(n-1), a.,1 = 1,,2/2 - In,4/8 + (5/36)12,3 + o(n- 1 ).

a,, 2 = 1,,,3/6 + o(n'), and an,3 = 1,,4/24 -_ 1,3/18 + o(, - ').

Proof of Proposition 3.1: Results (1), (2), and (4) follow from the definition of

{l : i > 1}. For (3), we have

h(3,) + bh(0 2) + bh(3 3 ) +..

<h(a) + [h(a 2 ) + + h(ab+l)] + [h(ab+2) + + h(a 2b+l)] +

= -'h( ,)
i=1

=[h(al) + + h(c,)] + [h(ab+) + + h( 2 0b) +.

<bh(,31) + bh(0 2) + bh(,33 ) + ...,

where the first inequality comes from /3i = t(i-l)b+l < a(i-l)b+l-j, for all j > 0

and the monotonicity of h. Similarly, the last inequality is a consequence of 3, >

Ck(i-1)b+j, for all j > 1 and the monotonicity of h. The result then follows. D

Two more prositions remain to be proved. These will require a number of

lemmas which are given below.
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Lemma A.1. Suppose Y E o'(X1,...,Xk) and Z E a(Xk+n,Xk+n+,.. .).

(1) If IYI is bounded by C and IZI is bounded by D, then

Icum(Y, Z)I < 4CDan.

(2) If E[Y4 ] < C and E[Z4] < D, then

Icum(Y, Z)I < 4(1 + C + D)an,2 .

(3) if E[Y 4] _ C and E[Z 4] :_ D, then for positive numbers M and N,

(cum(Y, Z)I _< 4MINa,, + 4DNM- 3 + 4CMN-3 + C 112D 1/2M-'N - 1.

Proof: (1) See Lemma 2 of Billingsley [5], p. 317.

(2) See Lemma 3 of Billingsley (5j, p. 317.

(3) Let A be a set and define the indicator function IA take value 1 on A and 0 else-

where. Let Yo = YIIYIN, Y1 = YIIyI>N, Zo = YIjz<M, and Z1 = ZIizi>M. Then

IE[YoZol- E[Yo]E[Zo]I <_ 4MNa,, IE[YoZ]-E[Yo]E[Z]I <_ 4D M-3 N, IE[YI Zo]-

E[YI'E[Zo]j :_ 4CMN - , and JE[YIZI] - E[Y]E[Z]j <_ C1/D 11 2 '-N - . The

result follows from Icum(Y, Z) = IE[YZ] - E[Y]E[Z]I _ IE[YoZo] - E[Yo]E[Zo]j +

IE[YoZI - E[YoE[Z11 + IE[YZo] - E[YI]E[Zo] + IE[YZ,] - E[Y]E[Z]l. D

Lemma A.2. Suppose W E a(Xi,. . . ,Xk), Y E a(Xk+,. .. ,X), and Z E

0'(X+mX+m+i, ... ). Let am,n,, minf{a, Qn,i m+n}. Then

(1) If [WI is bounded by B, IY is bounded by C, and IZ[ is bounded by D, then

Icum(W Y, Z) 1 : 8BCDm,n.

(2) If E[1W 41] _< B, E[jY 4j] < C, and E[Z 4II _< D,then

Icum(W, Y, Z) _< 8LM o ...
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+ 8MNBL - 3 + 8LNCM - 3 + 8LMDN - 3

+ 2LC'/ 2D"/ 2M-N - ' + 2MB 1 D' 12L- 1N - 1

+ 2NB12 C'12 'L- M - + B'1 3 C"l3D 1 3L-/3M-1/3AN-1/ 3.

(3) If E[IW4 1] _< B, E[IY 41] _ C, and E[IZ 4I] _< D,then

Icum(W, Y, Z)I < Cam%,

where c is a constant.

Proof: (1) Notice that Icum(IV, Y, Z)f = IE[W - E(W)][Y - E(Y)I[Z - E(Z)j K<

2BIE[Y - E(Y)][Z - E(Z)]I _ 8BCDa,. Similarly, Icum(W,Y,Z)I <_ 8BCDM

and jcum(W, Y, Z)I < 8BCDa,,,+n.

(2) Similar to the proof of Lemma A.1(3).
S-1/4

(3) The desired result can be obtained by using (2) and let L = M = N ,-,,

Lemma A.3. Suppose Et a 2 0<

(1) If EY4 < Cb- 2 for some constant C, then n=-, ICov(Yo, Y)I = O(b-1).

(2) If EYo < Db 4 for some constant D, then E'n=-_,. ICov(Y, Y2) = 0(b-').

(3) If EYo' < Db- 4 for some constant D, then '- IC-v(YY )I = O(b- 2).

Proof: (1) From Lemma A.1, 2cum(Yo, ,) 4N 2 3 + 4Cb 4 N 2 + 4Cb-2 N 2

Cb-3 N - 2 . Let N = .- 1/23,-1/4, the above ineaqality can be reduced to Icum(Yo, II)J
1/2 E. 1/2

_ cb- 3/ 2 so that '=_ Icum(Io,I) I _ cb- 1 -' 1/2 < cb- 1  0 _ 1/

O(b-1 ).
(2) From Liapounov inequality, (E!Y'o14)1/4  (EY0Is)" / , it follows that El04 <
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Cb-2 where C = D 1/2 . From Lemma A.1, Icum(li, Y2 )I <4MN/3i+4Db-4A-3 N+

4Cb-2MN - 3 + C112D 12b-3 M- 'N - 1. Let -; = b-1/23 1/ 4 and M = b-'3 - 1 4, the

above ineaqality can be reduced to 0.. um(Yj, y )j _ cb3/2/ 2 so that

- Icum(Yo, Yi2 )1 cb_3/ 2 - Z312 c_/ .". =/2 0(b- 3/2 ). But

there is no O(b - 312 ) terms on the left hand side, it follows that E=-. ICov(YO, Yn)I

is at most O(b- 2 ).

(3) From Lemma A.1, Icum(Yf,Y 2 ) I _ 4N2 3, + 9Db- 4N - 2 . Let N = b-'3,- /4

then Icum(Io, YQ')I < cb- 2  3/2 . The result now follows. D

c 1/4

Lemma A.4. Assume E-,.=_o am,n < 0.

(1) If E0 < Cb- 2 for some constants C. then E. Icum(l",Y .Y) =

O(b- 2 ).
(2) If 11 8 < Db- 4 for some constant D, then - cum(Y0,}Y. Y2 )=

O(b 2 ).

(3) If E YO < Db-4 for some constant D, then jEy,,, Icum(y', y 2 )j =

O(b-3).

(4) If EY' < Db-4 for some constants D. then 'n,=_
0 

cum(Yo,Y , )I -

O(b- 3 ).

Proof: (1) Let L = b-1/ 2 3 - 1/ , l =- -1/23,-/4, and N = b-1/2 -A1/4 and then

from Lemma A.2. Icum(Io, Y . Y)1 < cb-23 3'14 where c is a constant, so that the

result follows.

(2) Similar to (1) except choosing L = b ,/2-/,M., l = bI /3nn, ,nd N

b - - /
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(3) Similar to (1) except choosing L = b-1/2)3;1/4, M = b-13/4 and N

b-1 3;--14

(4) Similar to (1) except choosing L = b- 1 -,1/ 4 , M 0;, a N ,

Remark A.5. Basically, in Lemmas A.1 through A.4, we have demonstrated

that an infinite sum of cumulants such as

S jcum[Y 0 , },•,Y'k]j

can be calculated by the following approach. We first show that each summand

is bounded by, say, cb-'h( ,,ni, . . ,nk), where c is a constant, b is the batch size,

and h(.) is a real value function. However, by suitable assumptions of bounded

moments and asymptotic properties of mixing constants, the infinite sum

E h(3,n"."nk)

is finite so that Z Icum[Y 0 Y , Y,* * ]I is of order 0(b).

Corollary A.6 (Cumulants of X' ). Assume that {X : i > 1) is a discrete

time, strictly stationary stochastic process with zero mean.

(1) If EIXiI 4 < oo, and the sequence is mixing with a,, = O(n - 4' - ) for some c > 0,

then ,(X, ) = o(,- ).

(2) If EtIX 112 < oo, and the sequence is mixing with c,, = 0(n - ' - ') for some c > 0.

then K2 (y2 ) = O(m-2).

(3) If EIX, I" < oc, and the sequence is mixing with a,, = 0(n - 1 2- ,) for some

> 0. then K3(3 .\) = O(m-).
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(4) If EIX 112 < oc, and the sequence is mixing with an = O(n - 16-
c) for some

> , then 4 (Xrn) = O(m- 4).

Proof: All four results are special cases of Lemma 2.6. E-

Corollary A.7 (Mixed cumulants of Xm and -X). Assume that {Xj : i _ 1}

is a discrete time, strictly stationary stochastic process with zero mean.

(1) If EIX1 I' < cc, and the sequence is mixing with an = O(n - 6 -
t) for some c > 0,

then tcii(Am,-2) = O(mn-).

(2) If EJXI 1
1
2 < oc, and the sequence is mixing with On = O(n -8 - ) for some c > 0.

then C2 (---m,X2) = O(m- 2).

(3) If EIX1 I16 < oo, and the sequence is mixing with a = - O(n- l' -0 ) for some
c> 0, then ,,,( ,2 O(m-3 ) and tC3,1(7,., ) = 0(M-).

(4) If EIX 1II' < oc, and the sequence is mixing with an = O(n - 12- ' ) for some
0o, then ,(Xm,X) = 0( - ) and - -2 = O(M-4 ).

0, ten K,2(y, M 0(m') ad I4,1(,Xm)

(5) If EIXI 1
24 < oc, and the sequence is mixing with an - (n- l4' - ) for some ( > 0,

then Kl, 3 (X,,Xn)= O(m-), In,(AmXrn) = O(m-,), and t 5,(,-A.) =

O(m-').

(6) if EIXI j2 < c0, and the sequence is mixing with an = O(n-1 6- ) for some c > 0,

then P 2.3 (X,X n) = O(m- 4 ), K4 2 (X,X,,) M= O(m-5 ), and K6 , (Xm,Xr) =

O(m-).

(7) If EIX1 32 < oc, and the sequenceis mixing with a, = O(n - 8 - ) for some >0.

then K3 .3 (ym, V)= O(m 5 ), K52(mAn) = O(m-6 ), and P7 .1(7m,- rn) =

O(m-j.
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Proof: These results can be obtained from Lemma 2.6.

Lemma A.8 (Cumulants of (1/n)"E', y2 ). Assume that {X, : i > 1} is a

discrete time, strictly stationary stochastic process with zero mean.

(1) if E1X 1 I" < oo, and the sequence is mixing with an = O(n-'), then

ic((1/f) ZF, Y) = o(b-').

(2) f EIX 112 < oo, and the sequence is mixing with an = O(n-9 ), then
,((1/n) Z,1~~y2) = (-')O(b- 2 ).

(3) If EIX 1 120 < , and the sequence is mixing with an = 0(n-l3 ), then

,C3((1/f) =En, Y2 ) = O(n-2)O(b-).

(4) If EIXI 121 < oo, and the sequence is mixing with an - O(n-"), then

K4((I/n) '=: Y 2) = O(n-3)O(b-4).

Proof: (1) tc((1/n) tC Y) = 12(Y) = O(b-l).

(2) From Lemma 2.8, the most significant term of t 2((1/n) ' =I Y2 ) is

(I/n) - cum(Y2, Y 2 ), which is (1/n)O(b- 2) form Lemma A.2.

(3) From Lemma 2.8, the most significant term of N3((1/n) Z, Y2) is

(1/n 2 ) ',0- cur(Y0, Yi2 Y 2), which is (1/n 2)O(b 3 ) from Lemma A.2.

(4) This can be proved in a similar fashion as (2) and (3).

Lemma A.9 (Mixed cumulants of Xm and (1I' " Y .2) Assume that

{X : i > 1} is a discret-e time, strictly stationary 6tochastic process with zero

mean.

(1) if EfXItI < 00, and the sequence is mixing with a,, = O(n-7 ), then

Ki,(X", (1/n) =I Y 2 ) = O(n-')O(b-2 ).

(2) If EX112 < oc, and the sequerce is mixing with an = O(n-9 ), then
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K2 ,1(X", (1/n) --= i y2) = O(n 2 )O(b 2 ).

(3) If EIX I 116 < x, and the sequence is mixing with a,, = 0(n-"), then

Ki,2 (A,,,, (1/n) 0'= Y2 ) = O(n-)O(b-), and "-3,i(-Y,, (1/n) Z'=, Y) =

0(n -3)0(6-3).

(4) If EIXI1 21 < oo, and the seouence is mixing with a,, = 0(n- 13 ), then

2,,(Xm, (1/n) '=, y2 ) = o(n-)ocb-) and tC,,(Xm, (7/n,) = Y2 ) =

o(n- 4 )o(b-4 ).

(5) f EIXi124 < oo, and the sequence is mixing with a, = O(n-), then

K1 3 (X, ,. (1/n) 0 L.2) = O(n-)O(b-), i3 .,(-,, (1/n) =:uY) =

o(n-)O(b-), and K5,(Xm, (1/n) ij=, 1') = O(n-)O(b-).

(6) f EIX 1 128 < oc. and the sequence is mixing with a,, = O(n-'), then

K2,3(X., (1/n) l IQ) = O(n-4)O(- 4 ), ,4,(', (1/n) E " 2) =

O(n-)O(b-), K3,3 (Xm, (1/n) E', Yj2 ) = O(n-)O(b-5), and

IC6,,(Ym, (I/n) E2=, I 2) = O(n-6 )O(b'-6 ).

(7) If EIX 132 < oo, and the sequence is mixing with a, = O(n-'9 ), then

/ 5,(Xm,, (1/,n) Z'=, .2) = O(n-)O(b-) and K7,1 (,. (1/n) E'=, Y,=

O(n-)O(b-').

Proof: (1) From Lemma 2.8, the most significant term of Ki,i(Y,, (1/n) v2=1 Y)

is (1/n) "- cure(Y, Y 2), which is (1/n)O(b 2 ) form Lemma A.3.

(2) From Lemma 2.8, the most significant term of IC2 ,i(X', (1/n) E',= Y 2 ) is

(1/n 2) = cum(Y0, }, 1.2), which is (1/n 2)O(b-2 ) form Lemma A.4.

(3) From Lemma 2.8, the most significant term of KI,2 (X,,, (1/n) _, Y 2 ) is

(1/n 2 ) ,= cum('Io, y2, y 2 ) which is (1/n )O(b - ) form Lemma A.4.

(4)-(7) Can be shown by using the method specified in Remark A.5. Z
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Lemma A.1O (Mixed cumulants of XM, and (1/n) i Yi2). Assume that

{Xi : i > 1 } is a discrete time, strictly stationary stochastic process with zero

mean.

(1) If EJX 1 '2 < oo, and the sequence is mixing with an = O(n-9 ), then
-2

ICiAX, (1/n) El 2) = o(n-2 )o(b-2) •

(2) If EIXi 120 < oo, and the sequence is mixing with an = O(n-13 ), then
-32 -3)-2 , F

2,1 (Xrn, (1/) n .Y 2 ) = o(n- 3)O(b 3 ) and KI,2(Xr,(1/n) , Y2) =

O(n- 3 )O(b- 3) + o(n-2 )O(b-).

Proof: (1) Notice that K1,1(Xr,, (1/n) E= Y2 ) = ,i(Am, (1/n) ZL, 2) The

order can be obtained from Lemma A.9(2).

(2) It can be shown that K2,1(X,,, (1/n) 7 =9 4 ,1(X., (1/n)

4/ 3 (X-.) Ki(-X., (1/n) i'=, i2) + 4 2 (Xm,,)K 2 ,i(Xm, (1/n) El= Y 2 ). The desired

order follows from Lemma A.9. The second result can be proved by noting
-2

K1, 2 (XM, (1/n) /n) = Y2)+2 K(Z - , (1/n) = 2)and

by another application of Lemma A.9. 13

- ,-2 E 2

Lemma A.11 (Mixed cumulants of Xm, Xm, and (1/n) i= Y). Assume

that {X, : i > 1} is a discrete time, strictly stationary stochastic process with zero

mean.

(1) If EIX1 [16 < oc, and the sequence is mixing with an = O(n-'), then
- 2

K,,,( 'mx ,,(1/n) E=, S?) = O(n)O(b-) •

(2) if EIX I2 < oo, and the sequence is mixing with an = Q(n-l3 ), then

K2,1,,(X,Xn,(1/n)E' "112) = o( 3)o(b-3).

(3) /f EIXd12 < :, and the sequence is mixing with a, O(n-' 5 ), then
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K,1, 2,(x.,x,(/)m (, Y)) = O(n-O(b-), Ki,I, 2(-',,rn, (l/r,) Yi 1 y2 ) =

o(n)O(b-'), and , 3 ,.,(Xmix,. (1/fn) ) = o(n-)O(b-).

(4) lf EIXi128 < oo, and the sequence is mixing with an = 0(n-), then
2 E n -4) I2y 2,,. ,( IC.x,,(1/n.) 0,,Y? (n-,)o(b-)=

K 2 ,2 ,(Amik -- K2,l, 2 (X m, (1/n)Zn1  2)

-4 -4) ~ -2n 2)=Or5 b-.

o(r--)o(b-), and K4,1,1(xn,,-r,, (1/n) E'=l Y)= o(rr-)o(b-) •

(5) If EXl132 < oo, and the sequence is mixing with a, = 0(n-1 9), then
T -- -4"F,

3 ,2 3,(Xm,AV2(1/nl) ' ) o-0 5 )O(b- 5 ) and K3,1..' (x, X , (1/n) zl-1 Y2)

= O(- 5)0(b- 5 ).

Proof: For each of the desired results, we first derive an identity and then derive

the order from Lemma A.9. Those identities are as follows.
(1) F,.ii(X mAr, (1/n) 1T=, Y 2 ) = I3 ,(Xm, (12) E , Y2 ) +

(2) 2,i,(Xr,,,XM, (1/n) i= y 2) = K3,1(Y., (1/n) =, 1 2) +

2K2(X.),I.i(Y,, (1/n) Zi= 1 ) + 4,,(Xm)Ki(Xm, (1/,) Zi=1 Y2 ).
() ,X,,(1/n) Z'=1 y 2 ) = Ki(Xm, (1/n) ij=j 1,2) +

4 4,,(Xm)K,(X, E (/n) y2.1 17) + y2(),.(X,, (1/n) Z =1 ),2) +

8K3 (m)K,i(,x. (1/n) = ) + K2(.,, i(Xm, (1/n) i= )

+ 4K 2 ,(Y, (1/n) (1/n 1i)=,(X-,, (1/n) =1 / i= +

2,K(X.)Ki,(Xm, (1/n) ' i=1 + 2); and

K3.1,(Xm,X,,,(l/n) i,=, y 2 ) K Y,(X,, (1/n) i=, 2 ) +

2K4 (Xm)KX,(X,, (1/n) =, 1i) + 61C(X,,)K 3,i(X, (1/n) i y,) +

6r1 . , (,,, (l/n) E : =- i). 8
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(4) IC2 ,2 ,l(mm (1 /n) z~ 1Y)-K6,1(m (1/n) z' 1y)

+ 12tC2 (Xm.)P 4 ,(Xm, (1/n) y 2) +4(X)i(m,(/)Z 1 y 2) +

16r.3 (Xm)KX3 ,i(Xm,, (1/n) i~ Y2') + 12r-4 (Vm)rl2 ,(Tm, (1/n) E'= y 2 ) +

24i(xm)I 2,(7m, (1/n) y 2)i + 241C3 (X.)iC2(7m)K2,(Tm, (1/n) EnU. y 2);

K2,i,2(Xm, Am, (1/n) 72= En 2) = K4 ,2 (T., (1/n) E"' Y 2) +

4r-3 ,i(Xm,, (1/n) En I 2)n1,1(T. m~(/)~2) +

21C3 Xm)i,2 Xm,(1/) ~ y 2) + 4t 2 (Xm)1 2 ,2 (Xm, (1/n) n' y 2) +

4/2 I(Xm.(1/n) ilY 2):and

K4,l~(XmXrn(1/f)Z1 Y 2) =K 6,1(X, (1/fl)E Z. 1 y 2) +

8X2(Xm)K4,1(Xm 1n Y)+2 5 Xm, (1/n) E'(1n) Y 2) +

12-K3 (Xmn)K 3 ,1(Xm, (1/n) EL1 y2)i + F(mK,( 1 n , y,).

(5) c3,,1(~, ~(1/) i=1 +2 8K4,(Xm,(7n) (1/n) +=

16K2(Xm)K5 ,i(Xm, (1/~n 1y 2) +n 2K(mK~i ,(/) ~= 2

8K3 ,2m)1,(m, (/n) X7,2 )+1K(Xm), (n) (1/n zi . 2

18K2(Xm.)K5,i(Xm(, (1/n) En~= y2) +4K(m 3 ,X,(/) i 2) +

96 3X ) 2 (r) 2 i(Xm (1n +jj 46y ) r-~ and 1/)

K3,1~~~~ K2(X1,7rn (1/n) En~ 12 y2 +S2 X,(/)Z= 2

6 2 -(Xmn)K,1(Xmn, (1/n) E'~XQ + 6r3 (mF,( (1)l Zi. 11

48K4 (X,/n)T, (~~1n) i~li(Xm, 2(1/n) z:1 1 Q) +)E=

2K 3 Tc,i(m,n(1/ ) En 12 Ki,1/f 2) +ny

i=(m)i2 (m (1n +~= Y 2) C(,)27)ljn +1n
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Lemma A.12 (Cumulants of A,,b). Assume that {X : i > 1} is a discrete

time, strictly stationary st-,chastic process with zero mean.

(1) If EX14 < oo, and the sequence is mixing with an = O(n-S), then Ki(An,b) =

O(b-') + O(n-')

(2) If EIX, I"1 < oc, and the sequence is mixing with a,, = O(n-9 ), then K2(A.,,,b) =

0(n-1).

(3) ff EIX 120 < oc, and the sequence is mixing with a,, = 0(n-1 3 ), then K3 (A,n,b) =

0(n2)

Proof: Recall that A,,b - V,,,b/(Omb) - 1 and V',b = (l/n) E.' --. -- -'-, then

(1) C,/,.U) = E[V1.b(aIb) - 11 = (bl)E((/n) E ' 1) - (b/, )E -Y

(bIa 2 )E(Y 2 - 1) - (bl )EX,,, = O(b') + O(n').

(2) K2(A,,b) = (b/a-)2 ,L(1/n) M }2 - X = (b/o- )2 fo(n-)O(b-) +

O(n-2)O(b-2 ) + 0(n- 2)O(b- 2)] = O(n-'), where the orders are obtained from

Corollary A.6, Lemma A.8, and Lemma A.10.
2 )3 y~2 2 ] a 3 - ( 2

(3) K3(L,,) = (b/ K)3,[(1/n) E' Y2-,] = (bl )3[O(n )O(b-)] = 0(n-),

where the orders are obtained from Corollary A.6, Lemma A.8, and Lemma A.10.

Lemma A.13 (Mixed cumulants of.m and An,b). Assume that {X, :i> 1}

is a discrete time, strictly stationary stochastic process with zero mean.

(1) If EIX1s < oc, and the sequence is mixing with a, = O(n-'), then

Kl,.(,,,.b,X ) = O(n-')O(b-1 ).

(2) If ElX.¥I 6 < :c, and the sequence is mixing with a,, = O(n-l), then

K2 ,1(A,,.b ,, ) = (n_)O(b-]).
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(3) If EXII12 < oo, and the sequence is mixing with a, = 0(n-9), then

K,, 2(-An,b,-) = O(n-)O(b-').

(4) If EIXI[24 < oo, and the sequence is mixing with a,, = O(n-'5 ), then

K3,,(A.,b,X,,) = O(n-3)O(b-').

(5) If EJX 1 120 < cc, and the sequence is mixing with a,. = O(n-' 3), then

X 2,2(L,,,b,Xn) = O(n- 3)O(b-').

(6) If EX 116 < oo, and the sequence is mixing with an = 0(n- 1 ), then

K,,3 (A.,,b,Am) = O(n-3 )O(b- 2 ).

(7) If EIX 2 < oc, and the sequence is mixing with a,, = O(n-l7 ), then

K3 ,2(A.,b,.V,) = O(n-4)O(b- 1).

(8) If EX 1124 < oc, and the sequence is mixing with a,, = O(n-15 ), then

K2,3(A,,b,Xm) = O(n -4 )O(b- 2 ).

(9) if EIX120 < oo, and the sequence is mixing with a,, = O(n-1 3 ), then

.,,(',,,b,'(,) = O(n 4 )O(b-).

(10) If EIXI 132 < oc, and the sequence is mixing with a,, = O(n-' 9 ), then

IC3 , 3 (-A,,b,Xm) = O(n-)O(b-2 ).

(11) If EJXI 128 < oo, and the sequence is mixing with a, = O(n-17), then

K,2 4(A.,b,,) = O(n-')O(b- 3).

Proof: Recall thdt A,,,b = V,,,b/(u%/b) - 1 and 1,6 = (1/n) ", , , then

(1) K,l.(Z .,, x,,) =(b/,O,)[K,,i((1//) Zi,=, Y,mX,) + ,(x~,,, x.,)] =

Q(n-1 )O(b-1). where the orders are obtained from Corollary A.7 and Lemma A.9.
(2) K2,1(A,, Xm) = (b/a2) 2 K,,,.,[(1/n) En=1y2 -2 T2(1/n)ZL1 y -X,.,

- O(n- 2)O(b-1 ), where the orders are obtained from Corollary A.7, Lemma A.9.
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and Lemma A. 11.

(3) ,,(L.,b,.Xm) = (b/,')Ki,i[(1/n) E= 1 Y2 -" ,,x.,Xm,,] = O(n-o(-'),

where the orders are obtained from Corollary A.7 and Lemma A.9.

(4) ,,(An,b, X.) = (b/o')X 3,1[(l,/n) En Y x -',',,]

= (51 )30(n-3)O(b- O) = O(n- 3 b-i), where the orders are obtained from Corol-

lary A.7, Lemma A.9, and Lemma A.11.

(5) K2, 2(An,b,Xm) = (b/a)uK2,2 [(1/n) _= ", ,

= (b/n )20(n-3 )O(b 3 ) = O(n 3 )O(b-'), where the orders are obtained from

Corollary A.7. Lemma A.9. and Lem-na A.11.

(6) KI,3(A .b,m) = (b/,,)K.[1/n) i=' y 2  XnX,,

= (b/,2 )20(n-3 )O(b -3 ) = O(n-3 )O(h-2), where the orders are obtained from

Corollary A.7, Lemma A.9, and Lemma A.11:

(7) I 3 .2(An.b,X,) = (b/a) 3 ,K2[(l/n) =I n

= (b/a2) 3 O(n-4 )O(b-4 ) = O(n- 4 )O(b-1), where the orders are obtained from

Corollary A.7, Lemma A.9, and Lemma A.11.

(8) t2,3(An,b,-,.) = (b/o'2 ) 2,3[(1/n) i= y 2  v

= (b/a )20(n-4 )O(b- ' ) = O(n- 4)O(b- 2), where the orders are obtained from

Corollary A.7, Lemma A.9, and Lemma A.11.

(9) K .,4 (A,b, ,.) = (blo ), 1 ,4[(1/n) = y 2 
-

= (b/an ) 20(n-4 )O(b 4 ) = O(n-4 )O(b-3 ), where the orders are obtained from

Corollary A.7, Lemma A.9, and Lemma A.11.

(10) C33(An,b,Xm) = (oa'.) 3 K3,3 [(1/n) t = 2 - X,,

= (b/r) 3 0(n-5 )O(b-S) = O(n-)O(b-2 ), where the orders are obtained from

Corollary A.7, Lemma A.9, and Lemma A.11.

(11) 2,,(,,n,b,,m) = (b/%) 2 n2,4 f(1/n) En 2 - . Vn
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- (b/1') 20(n-)O(b-) = O(n-5)O(b-3), where the orders are obtained from

Corollary A.7, Lemma A.9, and Lemma A.11. 11

Proof of Proposition 3.4: Recall that {X,} is zero mean. From equation (3.10),

t.,b = (M 1/2 /am)ym

{1 - (1/2).,b + (3/8)A, -(5/16)a, +A.3

(1) K1(t,,b) - (m"2Iam)E-Xn{1 -(l/ 2 )A.,b + (3/8) ,b -(5/16)A4,b + . =

(M'/'/a,)E(''Cm) - (1/2)(m/'/am)E['XmnA,b] + .. The first term on the right

hand side is 0, the second term is O(n-1/26- 1/') and has the most significant

term -(1/2)(v~ 1/ ,' ,(1/n) 'En 11"), and the remainder terms are of

o(n- 1/2b-/ 2 ).

(2) K2(t,b) = (m/c,)K 2 (Xm)-(m/,,) ,(,.4f.,b)+(1/4)(ml, ),2(A,,b)+

The desired result then follows from Lemmas A.12 and A.13.

(3) Note that IC3(tn,b) - (m 3 /2 /c3)K3 (-Z) - (3/2)(m3 /2/ )K 2 ,1, ,.An,b) +

(3/4 ) (M3/2/0,3, ),2(',, An,b) - (1/8)(m 3/2/a3 )K3( A,, ) + .... The desired result

tehn follows from Lemmas A.12 and A.13.

(4) Note that K3(tn,b) = (m 2 /a r 4 (",) - 2(m 2 /an)X3,1(X., An,b) +

(3/2)(m2 Iol)K 2,2('Y., A,,b) - (1/2)(m 2/o )I, 3(Xm, An,b) +

(1/16)(m 2/a0)K 4 (An,b) + .... The desired result then follows from Lemmas A.12

and A.13. D
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